E. coli BW25141 (rrnB3 DElacZ4787 DEphoBR580 hsdR514 DE(araBAD)567 DE(rhaBAD)568 galU95 DEendA9::FRT DEuidA3::pir(wt) recA1 rph-1) was used for maintenance of the template plasmid pKD13 (GenBank™ Accession number AY048744). pKD46 (GenBank™ Accession number AY048746; Datsenko and Wanner, 2000 (link)) was made by PCR amplification of the Red recombinase genes from phage λ and cloning into pKD16, a derivative of INT-ts (Haldimann and Wanner, 2001 (link)) carrying araC and araBp from pBAD18 (Guzman et al, 1995 (link)).
Bacteriophages
They are found in diverse environments and play a crucial role in microbial ecology and evolution.
Bacteriophages exhibit a wide range of morphologies and genome structures, and have been studied for their potential applications in phage therapy, bacterial detection, and biotechnology.
Reasearchers can leverae PubCompare.ai's AI-driven platform to optimize their bacteriophage research, locating protocols from literature, preprits, and patents with ease and identifying the best protocols and products through AI-driven comparisons.
PubCompare.ai's intuitive tools and analytics enable seamless, data-driven bacteriophage research exploration.
Most cited protocols related to «Bacteriophages»
E. coli BW25141 (rrnB3 DElacZ4787 DEphoBR580 hsdR514 DE(araBAD)567 DE(rhaBAD)568 galU95 DEendA9::FRT DEuidA3::pir(wt) recA1 rph-1) was used for maintenance of the template plasmid pKD13 (GenBank™ Accession number AY048744). pKD46 (GenBank™ Accession number AY048746; Datsenko and Wanner, 2000 (link)) was made by PCR amplification of the Red recombinase genes from phage λ and cloning into pKD16, a derivative of INT-ts (Haldimann and Wanner, 2001 (link)) carrying araC and araBp from pBAD18 (Guzman et al, 1995 (link)).
VirSorter was then compared with the same prophage detection tools on the set of simulated SAGs. In that case, a viral sequence was considered as detected if predicted as completely viral or as a prophage. All the additional detections were manually checked to verify if the region was indeed viral (originating from a prophage in one of the microbial genomes rather than from a viral genome) or a false positive. The same approach was used for the simulated microbial and viral metagenomes results.
For each set of predictions, two metrics are computed. First, the Recall value corresponds to the number of viral sequences correctly predicted divided by the total number of known viral sequences in the dataset, and reflects the ability of the tool to find every known viral sequence in the dataset. Second, the Precision value is computed as the total number of viral sequences correctly predicted divided by the total number of viral sequences predicted, and indicates how accurate the tool is in its identification of viral signal.
Additionally, two Salmonella phages (GE_vB_N5 and FE_vB_N8) were used for the illustration of genome and alignment length differences. The genome of the K155 strain of the T7 phage was used to test the effect of genome permutations and reverse complementarity on the intergenomic distances. Lastly, two artificial DNA sequences were generated by (i) scrambling the T7 genome with Shuffle DNA, part of the Sequence Manipulation Suite [21 (link)] and (ii) using Vladimír Čermák’s Random DNA Sequence Generator at
Most recents protocols related to «Bacteriophages»
Example 56
Escherichia coli Nissle 1917 (E. coli Nissle) and engineered derivatives test positive for a low level presence of phage 3 in a validated bacteriophage plaque assay. Bacteriophage plaque assays were conducted to determine presence and levels of bacteriophage. In brief, supernatants from cultures of test bacteria that were grown overnight were mixed with a phage-sensitive indicator strain and plated in soft agar to detect the formation of plaques, indicative of the presence of bacteriophage. Polymerase chain reaction (PCR) primers were designed to detect the three different endogenous prophages identified in the bioinformatics analyses, and were used to assess plaques for the presence of phage-specific DNA.
Example 2
Bovine serum albumin (BSA), erbB2 extracellular domain (HER2) and streptavidin (100 μl of 2 μg/ml) were separately coated on Maxisorp 96 well plates. After blocking with 0.5% Tween-20 (in PBS), biotinylated and non-biotinylated hu4D5Fabv8-ThioFab-Phage (2×1010 phage particles) were incubated for 1 hour at room temperature followed by incubation with horseradish peroxidase (HRP) labeled secondary antibody (anti-M13 phage coat protein, pVIII protein antibody).
Standard HRP reaction was carried out and the absorbance was measured at 450 nm. Thiol reactivity was measured by calculating the ratio between OD450 for streptavidin/OD450 for HER2. A thiol reactivity value of 1 indicates complete biotinylation of the cysteine thiol. In the case of Fab protein binding measurements, hu4D5Fabv8 (2-20 ng) was used followed by incubation with HRP labeled goat polyclonal anti-Fab antibodies.
EXAMPLE 36
Peripheral blood mononuclear cells were prepared from blood samples obtained from llama No. 45 and No. 46 using Ficoll-Hypaque according to the manufacturer's instructions. Next, total RNA extracted was extracted from these cells and used as starting material for RT-PCR to amplify Nanobody encoding gene fragments. These fragments were cloned into phagemid vector pAX50. Phage was prepared according to standard methods (see for example the prior art and applications filed by applicant cited herein) and stored after filter sterilization at 4° C. for further use.
Example 4
We tested the resilience of the reaction of SpyTag002 and SpyCatcher002 under a wide range of conditions. The above rate constants were calculated at pH 7, but reactivity was similar at pH 4 and slightly higher at pH 5 and 6 (
SpyCatcher002 was selected on phage as an N-terminal fusion to pill. We confirmed that SpyCatcher002 also behaved well as a C-terminal fusion, showing efficient reaction of MBPx-SpyCatcher002 with SpyTag002-MBP (
EXAMPLE 12
Peripheral blood mononuclear cells were prepared from blood samples obtained from llama No. 146 and No. 147 using Ficoll-Hypaque according to the manufacturer's instructions. Next, total RNA extracted was extracted from these cells and used as starting material for RT-PCR to amplify Nanobody encoding gene fragments. These fragments were cloned into phagemid vector pAX50. Phage was prepared according to standard methods (see for example the prior art and applications filed by applicant cited herein) and stored after filter sterilization at 4° C. for further use.
Top products related to «Bacteriophages»
More about "Bacteriophages"
These unique microorganisms play a crucial role in microbial ecology and evolution, and have garnered significant interest for their potential applications in various fields.
Bacteriophages exhibit a wide range of morphologies, from simple icosahedral structures to more complex tail-containing virions.
Their genomes can also vary, with diverse structures and compositions, including single-stranded and double-stranded DNA or RNA.
This diversity allows phages to adapt to and infect a wide range of bacterial hosts.
Researchers have leveraged advanced technologies, such as the Illumina MiSeq and HiSeq 2500 platforms, to study the genomics and diversity of bacteriophages.
Techniques like Phage DNA Isolation Kits and T4 DNA ligase enable the extraction and manipulation of phage genetic material, while Mitomycin C and Polybrene can be used to induce phage production and enhance infection, respectively.
The potential applications of bacteriophages are vast and varied.
Phage therapy, where phages are used to target and eliminate specific bacterial infections, has shown promise as an alternative to traditional antibiotics.
Bacteriophages can also be utilized for bacterial detection and identification, as well as in biotechnological applications like bioremediation and enzyme production.
To optimize their bacteriophage research, scientists can utilize the AI-driven platform offered by PubCompare.ai.
This innovative tool allows researchers to easily locate relevant protocols from literature, preprints, and patents, and leverage AI-driven comparisons to identify the best protocols and products.
PubCompare.ai's intuitive tools and analytics enable seamless, data-driven exploration of the bacteriophage research landscape.
Whether you're studying phage ecology, exploring phage therapy, or investigating biotechnological applications, PubCompare.ai can help you navigate the complexities of bacteriophage research and unlock new possibilities.
Discover the power of AI-driven bacteriophage research with PubCompare.ai today!