Baculoviridae
These viruses are known for their unique life cycle and ability to produce occlusion bodies, which protect the virus particles and facilitate their transmission between hosts.
Baculoviridae have become increasingly important in biotechnology and research, with applications ranging from biopesticides to protein expression systems.
This MeSH term provides a concise overview of the Baculoviridae family, its characteristics, and its relevance in various fields of study.
Most cited protocols related to «Baculoviridae»
Several alternative expression vectors have been used with selected targets (
An important consideration in vector construction is the ease of cloning the same gene fragment into multiple contexts. LIC requires short (12–16 bp) extensions at both ends of the insert that overlap vector sequences flanking the cloning sites. The vectors used in the SGC can be divided into three LIC classes (
Host cells are derived from BL21(DE3) and Rosetta2 (Merck). A phage-resistant derivative of BL21(DE3) was isolated in our lab and termed BL21(DE3)-R3; this bacterial strain was then transformed with plasmid pRARE2 (isolated from Rosetta2 calls), which carries seven rare-codon tRNA genes. The resulting chloramphenicol-resistant strain BL21(DE3)-R3-pRARE2 is the standard expression host.
Most recents protocols related to «Baculoviridae»
Example 5
To deliver the albumin-specific ZFNs to the liver in vivo, the normal site of albumin production, we generated a hepatotropic adeno-associated virus vector, serotype 8 expressing the albumin-specific ZFNs from a liver-specific enhancer and promoter (Shen et al., ibid and Miao et al., ibid). Adult C57BL/6 mice were subjected to genome editing at the albumin gene as follows: adult mice were treated by i.v. (intravenous) injection with 1×1011 v.g. (viral genomes)/mouse of either ZFN pair 1 (SBS 30724 and SBS 30725), or ZFN pair 2 (SBS 30872 and SBS 30873) and sacrificed seven days later. The region of the albumin gene encompassing the target site for pair 1 was amplified by PCR for the Cel-I mismatch assay using the following 2 PCR primers:
The region of the albumin gene encompassing the target site for pair 2 was amplified by PCR for the Cel-I assay using these PCR primers:
As shown in
The mouse albumin specific ZFNs SBS30724 and SBS30725 which target a sequence in intron 1 were also tested in a second study. Genes for expressing the ZFNs were introduced into an AAV2/8 vector as described previously (Li et al. (2011) Nature 475 (7355): 217). To facilitate AAV production in the baculovirus system, a baculovirus containing a chimeric serotype 8.2 capsid gene was used. Serotype 8.2 capsid differs from serotype 8 capsid in that the phopholipase A2 domain in capsid protein VP1 of AAV8 has been replaced by the comparable domain from the AAV2 capsid creating a chimeric capsid. Production of the ZFN containing virus particles was done either by preparation using a HEK293 system or a baculovirus system using standard methods in the art (See Li et al., ibid, see e.g., U.S. Pat. No. 6,723,551). The virus particles were then administered to normal male mice (n=6) using a single dose of 200 microliter of 1.0el 1 total vector genomes of either AAV2/8 or AAV2/8.2 encoding the mouse albumin-specific ZFN. 14 days post administration of rAAV vectors, mice were sacrificed, livers harvested and processed for DNA or total proteins using standard methods known in the art. Detection of AAV vector genome copies was performed by quantitative PCR. Briefly, qPCR primers were made specific to the bGHpA sequences within the AAV as follows:
Cleavage activity of the ZFN was measured using a Cel-I assay performed using a LC-GX apparatus (Perkin Elmer), according to manufacturer's protocol. Expression of the ZFNs in vivo was measured using a FLAG-Tag system according to standard methods.
As shown in
The mouse specific albumin ZFNs were also tested for in vivo activity when delivered via use of a variety of AAV serotypes including AAV2/5, AAV2/6, AAV2/8 and AAV2/8.2. In these AAV vectors, all the ZFN encoding sequence is flanked by the AAV2 ITRs, contain, and then encapsulated using capsid proteins from AAV5, 6, or 8, respectively. The 8.2 designation is the same as described above. The SBS30724 and SBS30725 ZFNs were cloned into the AAV as described previously (Li et al., ibid), and the viral particles were produced either using baculovirus or a HEK293 transient transfection purification as described above. Dosing was done in normal mice in a volume of 200 μL per mouse via tail injection, at doses from 5e10 to 1e12 vg per dose. Viral genomes per diploid mouse genome were analyzed at days 14, and are analyzed at days 30 and 60. In addition, ZFN directed cleavage of the albumin locus was analyzed by Cel-I assay as described previously at day 14 and is analyzed at days 30 and 60.
As shown in
Example 2
This study demonstrates the efficacy of one embodiment of the Porcine Circovirus Type 2 ORF2b Vaccine against a PCV2a and/or PCV2b challenge. Cesarean-derived colostrum-deprived (CDCD) piglets are used in this study and separated into 2 groups; 1) pigs vaccinated with an experimental Porcine Circovirus Vaccine including the PCV2b ORF2 R63T variant of Example 1 (Killed Baculovirus Vector) that are challenged with virulent PCV2b and, 2) non-vaccinated challenged control pigs that are challenged with virulent PCV2b. On Day 0, Group 1 is administered 1 mL of vaccine intramuscularly (IM) whereas Group 2, non-vaccinated challenge control pigs do not receive any treatment. On Day 28, all pigs in groups 1 and 2 are challenged with virulent PCV2b 1 mL intranasally (IN) and 1 mL IM with an approximate dosage of 3.0 Log10 TCID5/mL of live virus. All pigs receive 2.0 mL Keyhole Limpet Hemocyanin emulsified in Incomplete Freunds Adjuvant (KLH/ICFA) IM on Days 25 and 31. Pigs are monitored daily for clinical signs, and blood is drawn for serologic testing periodically. On Day 56 all pigs are necropsied and select tissues are collected and gross pathology observations are made.
As a whole, vaccinated animals exhibit reduction when compared to their respective challenge control group in all parameters tested.
Example 36
A crude preparation of recombinant FAAH enzyme was derived from baculovirus with the fluorescent-based substrate, octamide 4-methoxypyridine (OMP). Approximately 1700 compounds designed to inhibit sEH were tested with the FFAH preparation. Results shown in
For the booster, the CoV2 preS dTM derived from the ancestral strain (D614) and the Beta variant were produced using an optimized purification process to ensure a minimum of 90% purity.
The antigens were formulated in monovalent or bivalent formulations with AS03 adjuvant. The CoV2 preS dTM was produced from a Sanofi proprietary cell culture technology based on the insect cell—baculovirus system, referred to as the Baculovirus Expression Vector System (BEVS). The CoV2 preS dTM (ancestral D614) sequence was designed based on the Wuhan YP_009724390.1 strain S sequence, modified with 2 prolines in the S2 region, deletion of the transmembrane region, and addition of the T4 foldon trimerization domain. The CoV2 preS dTM (Beta) was designed based on the Beta (B.1.351) sequence (GISAID Accession EPI_ISL_1048524) and contains the same modifications.
AS03 is a proprietary adjuvant system composed of α-tocopherol, squalene, and polysorbate-80 in an oil-in-water emulsion manufactured by GSK. Vaccine doses were formulated by diluting the appropriate dose of preS dTM with PBS–tween to 250 µL, then mixing with 250 µL of AS03, followed by inversion five times for a final volume of 500 µL. Each dose of AS03 contains 11.86 mg of α-tocopherol, 10.69 mg of squalene, and 4.86 mg of polysorbate-80 (Tween 80) in PBS.
Top products related to «Baculoviridae»
More about "Baculoviridae"
These unique viruses are known for their intricate life cycle and the production of occlusion bodies, which safeguard the virus particles and facilitate their transmission between hosts.
Baculoviridae have become increasingly valuable in biotechnology and research, with applications ranging from biopesticides to protein expression systems.
The Bac-to-Bac baculovirus expression system is a widely used technology that leverages the power of baculoviruses to produce recombinant proteins in insect cells, such as Sf9 (Spodoptera frugiperda) and High Five (Trichoplusia ni) cells.
This system utilizes the PFastBac1 vector, which is engineered to facilitate the insertion of a gene of interest, and the PFastBac Dual vector, which allows for the co-expression of multiple genes.
The Cellfectin II reagent is a liposome-based transfection agent commonly used in conjunction with the Bac-to-Bac system to efficiently deliver recombinant baculovirus DNA into insect cells, enabling the production of the desired proteins.
Baculoviruses and their expression systems have become indispensable tools in various fields, including protein engineering, vaccine development, and fundamental research on virus-host interactions.
By understanding the characteristics and applications of these remarkable viruses, researchers can unlock new possibilities and advance their studies in the dynamic realm of Baculoviridae.