To develop the food list for the short-FFQ, we selected and combined items and supporting questions from the original long-FFQ. We selected the three major foods and beverages that contributed to inter-individual variation for each of 40 nutrients according to a cumulative R2 for the 40 nutrients,16 based on the multiple regression coefficient with total intake of a specific nutrient as the dependent variable and its intake from each food as the explanatory variable. Inter-individual variation was calculated by gender among 45 869 men and 52 989 women who responded to the JPHC Study 10-year follow-up survey. Consequently, cumulative R2 for the nutrients ranged from 0.4 to 1.0. For potential inter-individual variation in intake of specific food groups, some foods, such as coffee, were added. Ultimately, 66 food and beverage items were selected for the short-FFQ. In this validation study, information on alcoholic beverages was substituted with those from the long-FFQ (united with overall information of lifestyle), because these questions were not included in the short-FFQ. This was because information on alcoholic beverage intake was structured in pages for lifestyle other than diet, such as smoking status and physical activity, and the reproducibility of alcoholic beverage intake was relatively high even if questionnaires were administered at a 1-year interval.17 (link),18 (link)Intakes of energy, 53 nutrients, and 29 food groups were calculated using the Standard Tables of Food Composition in Japan 2010,19 Standard Tables of Food Composition in Japan Fifth Revised and Enlarged Edition 2005 For Fatty Acids,20 and a specifically developed food composition table for isoflavones in Japanese foods.21 (link)
Beverages
They play a crucial role in human nutrition, hydration, and cultural practices.
This term encompasses a wide variety of beveraqes, from traditional and artisanal to commercially produced drinks.
Researchers in the field of beverage science and technology investigate topics such as flavor, nutrition, processing, packaging, and consumer preferences to enhance beverage quality, safety, and appeal.
Most cited protocols related to «Beverages»
To develop the food list for the short-FFQ, we selected and combined items and supporting questions from the original long-FFQ. We selected the three major foods and beverages that contributed to inter-individual variation for each of 40 nutrients according to a cumulative R2 for the 40 nutrients,16 based on the multiple regression coefficient with total intake of a specific nutrient as the dependent variable and its intake from each food as the explanatory variable. Inter-individual variation was calculated by gender among 45 869 men and 52 989 women who responded to the JPHC Study 10-year follow-up survey. Consequently, cumulative R2 for the nutrients ranged from 0.4 to 1.0. For potential inter-individual variation in intake of specific food groups, some foods, such as coffee, were added. Ultimately, 66 food and beverage items were selected for the short-FFQ. In this validation study, information on alcoholic beverages was substituted with those from the long-FFQ (united with overall information of lifestyle), because these questions were not included in the short-FFQ. This was because information on alcoholic beverage intake was structured in pages for lifestyle other than diet, such as smoking status and physical activity, and the reproducibility of alcoholic beverage intake was relatively high even if questionnaires were administered at a 1-year interval.17 (link),18 (link)Intakes of energy, 53 nutrients, and 29 food groups were calculated using the Standard Tables of Food Composition in Japan 2010,19 Standard Tables of Food Composition in Japan Fifth Revised and Enlarged Edition 2005 For Fatty Acids,20 and a specifically developed food composition table for isoflavones in Japanese foods.21 (link)
It is becoming increasingly clear that the genome of a species can contain a great deal of complexity and diversity. A reference genome can vary significantly from that of any individual strain or isolate and therefore serves as the anchor from which to explore the diversity of allele and gene complements and to explore how these differences contribute to metabolic and phenotypic variation. In the pharmaceutical industry, knowledge of the yeast reference genome helps drive the development of strains tailored to specific purposes, such as the production of biofuels, chemicals, and therapeutic drugs (Runguphan and Keasling 2013 ). In the beverage industry, it aids in the fermentation of beers, wines, and sakes with specific attributes, such as desired flavor profiles or reduced alcohol (Engel and Cherry 2013 ). We have seen the advantage afforded the yeast and genetics communities because of the early availability of an S. cerevisiae reference genome. The great facilitation of scientific discoveries and breakthroughs is without question (Botstein and Fink 2011 (link)).
Some of the offspring and their partners who completed the general questionnaire of the LLS were invited to the clinic for additional measurements at the Leiden University Medical Center. These measurements lasted a half day and couples were invited for the morning program or the afternoon program, which were slightly different due to practical reasons. The first 24-hour recall was performed in those participants who came to the clinic for the measurement in the morning program [N=128 (Noffspring=62, Ncontrol=66)]. A dietician asked the participants about their dietary intake of the previous day covering all foods and beverages consumed from waking up until the next morning. The dieticians received standardized training, using a formal protocol, to reduce the impact of the interview on the reporting process. For the two remaining recalls, the dietician contacted the participants by telephone within the next seven days. The 24-hour recalls were performed throughout the year and the days were chosen non-consecutively. They include a randomly assigned combination of days of the week with all days of the week represented (80% weekdays and 20% weekend days), for each individual.
The food data from both dietary assessment methods were converted into energy and nutrient intake by using the NEVO food composition database of 2006 [6 ]. Furthermore, foods were categorized into 24 major food groups. Age was calculated from date of birth and completion date of the FFQ. For subjects with missing information on the date of completing the FFQ, we used the median date of the other subjects.
Most recents protocols related to «Beverages»
Example 3
Example 3 was made by combining 70 g of aquafaba (61% by weight), 40 g of sucrose (35% by weight), 1.2 g sucralose (1% by weight), 1.3 g vegetable juice liquid color (1% by weight), and 2.9 g natural mixed berry flavoring (3% by weight). The aquafaba contained about 90% water and about 2% protein, by weight. The combined ingredients were whipped to form a foam. The foam was piped onto a tray and baked to form a stable, baked solid foam.
The solid foam was added to 250-mL milk at a refrigerated temperature of about 40° F. to about 32° F. (about 4° C. to about 0° C.). The foam disintegrated quickly to form a purplish, mixed berry-flavored beverage.
Example 8
Example 8 was made by combining 70 g of aquafaba (62% by weight), 40 g of sucrose (36% by weight), 1.0 g Tasteva® (Tate & Lyle LLC, London, UK) stevia sweetener (0.9% by weight), caramel coloring agent 1 g (0.9% by weight), and 0.6 g chocolate cake flavoring (0.5% by weight). The aquafaba contained about 90% water and about 2% protein, by weight. The combined ingredients were whipped to form a foam. The foam was piped onto a tray and baked to form a stable, baked solid foam.
The solid foam was added to a 250-mL beverage and disintegrated in water at a refrigerated temperature of about 40° F. to about 32° F. (about 4° C. to about 0° C.) in less than 90 seconds to form a brownish, chocolate-flavored beverage.
In Examples 9-11, all of the ingredients were mixed together and cooked to about 295° F. (146° C.) on a stovetop. No acid was included in the ingredients, but acid may be added to provide a tart flavor and inhibit sugar crystallization, which decreases disintegration time. A drop roller was then used to form ball-shaped pieces of a desired size for hard candy. The ball-shaped hard candy pieces were then placed an oven for vacuum expansion. The candy was heated and expanded in the oven set at 155° F. (68.3° C.) for about 10 minutes on pans lined with crinkled aluminum foil. The edible solid foams of Examples 9-11 had a density in the range of 0.23 to 0.36 g/cm3 (0.13 to 0.21 oz/in3).
Example 14
Six formulations including alkalized cocoa powder were tested in a vacuum expanded hard candy beverage enhancer. All formulations had the same amounts of sucrose, high-maltose (HM) corn syrup, and stevia, as shown in Table 3. The amounts of water and alkalized cocoa powder or chocolate flavoring varied. For each formulation, all of the ingredients in Table 3 except for the stevia were mixed and cooked on a stovetop to about 295° F. (about 146° C.). The stevia was then added while gradually decreasing the temperature. The resulting hard candy was pulled for 15 seconds; Formulas A-E were mechanically pulled and Formula F was manually pulled. A drop roller was used to created spherical pieces of the hard candy. The spherical pieces were then vacuum-expanded in an oven. For the vacuum expansion, the candy was placed on pans lined with crumpled aluminum foil and was heated and expanded for about 10 minutes at an oven temperature of about 155° F. (about 68° C.). The disintegration times in Table 3 are for disintegration in milk at a refrigerated temperature of about 40° F. to about 32° F. (about 4° C. to about 0° C.).
While the foregoing specification illustrates and describes exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Example 6
Example 6 was made by combining 70 g of aquafaba (62% by weight), 40 g of sucrose (36% by weight), 1.0 g Tasteva® (Tate & Lyle LLC, London, UK) stevia sweetener (0.9% by weight), caramel coloring agent 1 g (0.9% by weight), and 0.2 g liquid chocolate flavoring (0.2% by weight). The aquafaba contained about 90% water and about 2% protein, by weight. The combined ingredients were whipped to form a foam. The foam was piped onto a tray and baked to form a stable, baked solid foam.
The solid foam was added to a 250-mL beverage and disintegrated in both milk and water in less than 90 seconds to form a brownish, slightly chocolate-flavored beverage. The milk and the water were at a refrigerated temperature of about 40° F. to about 32° F. (about 4° C. to about 0° C.
Example 4
As part of evaluating the feasibility of a yeast-based approach as a treatment to mitigate the effects of elevated concentrations of galactose in foods and beverages, several evolved clones were tested for their capability of degrading galactose when present in food. Milk was tested because it represents the most challenging food for galactosemia patients considering its high level of galactose (2-4 g per 100 mL of milk). Food spiked with galactose was tested in parallel.
For this study, three evolved yeast strains obtained by adaptive evolution followed by UV treatment, Clone Y-C201-1, Clone Y-C202-1, and Clone Y-C202-2, one evolved yeast strain obtained by adaptive evolution, Clone Y-C202, as well as the initial parent strain Yi were compared for their galactose consumption activity. Cultures were initiated from a single colony on agar plates and grown in 15 mL of liquid YP medium (1% yeast extract, 2% peptone; Teknova, Hollister, CA) in a 50-mL mini-bioreactor by incubation at 30° C. with an agitation of 225 rpm supplemented with 2% galactose (Teknova). Strain Saccharomyces boulardii (SB) was prepared similarly to the evolved clones except that it was grown in YP medium supplemented with 2% glucose.
The testing of galactose consumption was started with yeast cells obtained from a culture volume containing 1.0×109 Colony Forming Units (CFU) pelleted by centrifugation at 1000 rpm (Sorval, RT7) for 10 min at room temperature. Cell pellets were resuspended either in 1.0 mL of milk already pre-treated with lactase (LACTAID milk where lactose is transformed into galactose and glucose) or in 1 mL rodent diet (Teklad, Envigo) spiked with a solution of 5% galactose or a solution of 5% galactose+1% glucose. All the reactions were incubated at 37° C. Aliquots of the reactions were taken at multiple time points and stored at −20° C. until galactose concentration determination.
Top products related to «Beverages»
More about "Beverages"
They encompass a vast array of liquids intended for consumption, including water, juices, milk, alcoholic and non-alcoholic drinks.
Beverage science and technology researchers investigate various aspects such as flavor, nutrition, processing, packaging, and consumer preferences to enhance beverage quality, safety, and appeal.
Beverages play a crucial role in human health and well-being.
They provide essential nutrients, hydration, and contribute to the enjoyment of cultural and social experiences.
From traditional and artisanal drinks to commercially produced ones, the world of beverages is diverse and constantly evolving.
Researchers in the field of beverage science and technology utilize advanced analytical techniques, such as those found in SAS 9.4 and Stata version 15, to investigate beverage composition, quality, and safety.
Compounds like methanol, acetonitrile, and formic acid are commonly used in HPLC-grade solvents to analyze beverage samples.
Leucine enkephalin, a peptide, and HEM-907, a proprietary compound, may also be employed in beverage research and development.
By leveraging the insights gained from the MeSH term description and the capabilities of AI-driven platforms like PubCompare.ai, researchers can enhance their beverage research, improve reproducibility, and identify the most effective protocols and products.
This holistic approach to beverage science and technology allows for continuous innovation and the development of high-quality, safe, and appealing beverages that cater to the diverse needs and preferences of consumers.