Example 2
A. Seed Treatment with Isolated Microbe
In this example, an isolated microbe from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the isolated microbe as a seed coating, the corn will be planted and cultivated in the standard manner.
A control plot of corn seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.
It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiably higher biomass than the control corn plants.
The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.
The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.
In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.
B. Seed Treatment with Microbial Consortia
In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the microbial consortium as a seed coating, the corn will be planted and cultivated in the standard manner.
A control plot of corn seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.
It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiably higher biomass than the control corn plants.
The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.
The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.
In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.
C. Treatment with Agricultural Composition Comprising Isolated Microbe
In this example, an isolated microbe from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.
For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.
A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.
It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiably higher biomass than the control corn plants.
The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.
The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.
In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.
D. Treatment with Agricultural Composition Comprising Microbial Consortia
In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.
For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.
A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.
It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiably higher biomass than the control corn plants.
The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.
The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.
In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.
A. Seed Treatment with Isolated Microbe
In this example, an isolated microbe from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the isolated microbe as a seed coating, the corn will be planted and cultivated in the standard manner.
A control plot of corn seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.
It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.
The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.
B. Seed Treatment with Microbial Consortia
In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the microbial consortium as a seed coating, the corn will be planted and cultivated in the standard manner.
A control plot of corn seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.
It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.
The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.
C. Treatment with Agricultural Composition Comprising Isolated Microbe
In this example, an isolated microbe from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.
For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.
A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.
It is expected that the corn plants grown from the seeds treated with the with the agricultural composition will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.
The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.
D. Treatment with Agricultural Composition Comprising Microbial Consortia
In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.
For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.
A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.
It is expected that the corn plants grown from the seeds treated with the with the agricultural composition will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.
The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.
A. Seed Treatment with Isolated Microbe
In this example, an isolated microbe from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the isolated microbe as a seed coating, the corn will be planted and cultivated in the standard manner.
A control plot of corn seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.
It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.
The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.
B. Seed Treatment with Microbial Consortia
In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the microbial consortium as a seed coating, the corn will be planted and cultivated in the standard manner.
A control plot of corn seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.
It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.
The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.
C. Treatment with Agricultural Composition Comprising Isolated Microbe
In this example, an isolated microbe from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.
For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.
A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.
It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.
The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.
D. Treatment with Agricultural Composition Comprising Microbial Consortia
In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.
For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.
A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.
It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.
The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.
The inoculants were prepared from isolates grown as spread plates on R2A incubated at 25° C. for 48 to 72 hours. Colonies were harvested by blending with sterile distilled water (SDW) which was then transferred into sterile containers. Serial dilutions of the harvested cells were plated and incubated at 25° C. for 24 hours to estimate the number of colony forming units (CFU) in each suspension. Dilutions were prepared using individual isolates or blends of isolates (consortia) to deliver 1×105 cfu/microbe/seed and seeds inoculated by either imbibition in the liquid suspension or by overtreatment with 5% vegetable gum and oil.
Seeds corresponding to the plants of table 15 were planted within 24 to 48 hours of treatment in agricultural soil, potting media or inert growing media. Plants were grown in small pots (28 mL to 200 mL) in either a controlled environment or in a greenhouse. Chamber photoperiod was set to 16 hours for all experiments on all species. Air temperature was typically maintained between 22-24° C.
Unless otherwise stated, all plants were watered with tap water 2 to 3 times weekly. Growth conditions were varied according to the trait of interest and included manipulation of applied fertilizer, watering regime and salt stress as follows:
-
- Low N—seeds planted in soil potting media or inert growing media with no applied N fertilizer
- Moderate N—seeds planted in soil or growing media supplemented with commercial N fertilizer to equivalent of 135 kg/ha applied N
- Insol P—seeds planted in potting media or inert growth substrate and watered with quarter strength Pikovskaya's liquid medium containing tri-calcium phosphate as the only form phosphate fertilizer.
- Cold Stress—seeds planted in soil, potting media or inert growing media and incubated at 10° C. for one week before being transferred to the plant growth room.
- Salt stress—seeds planted in soil, potting media or inert growing media and watered with a solution containing between 100 to 200 mg/L NaCl.
Untreated (no applied microbe) controls were prepared for each experiment. Plants were randomized on trays throughout the growth environment. Between 10 and 30 replicate plants were prepared for each treatment in each experiment. Phenotypes were measured during early vegetative growth, typically before the V3 developmental stage and between 3 and 6 weeks after sowing. Foliage was cut and weighed. Roots were washed, blotted dry and weighed. Results indicate performance of treatments against the untreated control.
TABLE 15
StrainShootRoot
Microbe sp.IDCropAssayIOC (%)IOC (%)
Bosea thiooxidans123EfficacyEfficacy
overall100%100%
Bosea thiooxidans54522WheatEarly vigor - insol P30-40 —
Bosea thiooxidans54522RyegrassEarly vigor50-60 50-60
Bosea thiooxidans54522RyegrassEarly vigor - moderate P0-100-10
Duganella violaceinigra111EfficacyEfficacy
overall100%100%
Duganella violaceinigra66361TomatoEarly vigor0-100-10
Duganella violaceinigra66361TomatoEarly vigor30-40 40-50
Duganella violaceinigra66361TomatoEarly vigor20-30 20-30
Herbaspirillum huttiense222Efficacy—
overall100%
Herbaspirillum huttiense54487WheatEarly vigor - insol P30-40 —
Herbaspirillum huttiense60507MaizeEarly vigor - salt stress0-100-10
Janthinobacterium sp.222Efficacy—
Overall100%
Janthinobacterium sp.54456WheatEarly vigor - insol P30-40 —
Janthinobacterium sp.54456WheatEarly vigor - insol P0-10—
Janthinobacterium sp.63491RyegrassEarly vigor - drought0-100-10
stress
Massilia niastensis112EfficacyEfficacy
overall80%80%
Massilia niastensis55184WheatEarly vigor - salt stress0-1020-30
Massilia niastensis55184WinterEarly vigor - cold stress0-1010-20
wheat
Massilia niastensis55184WinterEarly vigor - cold stress20-30 20-30
wheat
Massilia niastensis55184WinterEarly vigor - cold stress10-20 10-20
wheat
Massilia niastensis55184WinterEarly vigor - cold stress<0<0
wheat
Novosphingobium rosa211EfficacyEfficacy
overall100%100%
Novosphingobium rosa65589MaizeEarly vigor - cold stress0-100-10
Novosphingobium rosa65619MaizeEarly vigor - cold stress0-100-10
Paenibacillus amylolyticus111EfficacyEfficacy
overall100%100%
Paenibacillus amylolyticus66316TomatoEarly vigor0-100-10
Paenibacillus amylolyticus66316TomatoEarly vigor10-20 10-20
Paenibacillus amylolyticus66316TomatoEarly vigor0-100-10
Pantoea agglomerans323EfficacyEfficacy
33%50%
Pantoea agglomerans54499WheatEarly vigor - insol P40-50 —
Pantoea agglomerans57547MaizeEarly vigor - low N<00-10
Pantoea vagans55529MaizeEarly vigor<0<0
(formerly P. agglomerans)
Polaromonas ginsengisoli111EfficacyEfficacy
66%100%
Polaromonas ginsengisoli66373TomatoEarly vigor0-100-10
Polaromonas ginsengisoli66373TomatoEarly vigor20-30 30-40
Polaromonas ginsengisoli66373TomatoEarly vigor<010-20
Pseudomonas fluorescens122Efficacy—
100%
Pseudomonas fluorescens54480WheatEarly vigor - insol P>100 —
Pseudomonas fluorescens56530MaizeEarly vigor - moderate N0-10—
Rahnella aquatilis334EfficacyEfficacy
80%63%
Rahnella aquatilis56532MaizeEarly vigor - moderate N10-20 —
Rahnella aquatilis56532MaizeEarly vigor - moderate N0-100-10
Rahnella aquatilis56532WheatEarly vigor - cold stress0-1010-20
Rahnella aquatilis56532WheatEarly vigor - cold stress<00-10
Rahnella aquatilis56532WheatEarly vigor - cold stress10-20 <0
Rahnella aquatilis57157RyegrassEarly vigor<0—
Rahnella aquatilis57157MaizeEarly vigor - low N0-100-10
Rahnella aquatilis57157MaizeEarly vigor - low N0-10<0
Rahnella aquatilis58013MaizeEarly vigor0-1010-20
Rahnella aquatilis58013MaizeEarly vigor - low N0-10<0
Rhodococcus erythropolis313Efficacy—
66%
Rhodococcus erythropolis54093MaizeEarly vigor - low N40-50 —
Rhodococcus erythropolis54299MaizeEarly vigor - insol P>100 —
Rhodococcus erythropolis54299MaizeEarly vigor<0<0
Stenotrophomonas chelatiphaga611EfficacyEfficacy
60%60%
Stenotrophomonas chelatiphaga54952MaizeEarly vigor0-100-10
Stenotrophomonas chelatiphaga47207MaizeEarly vigor<0 0
Stenotrophomonas chelatiphaga64212MaizeEarly vigor0-1010-20
Stenotrophomonas chelatiphaga64208MaizeEarly vigor0-100-10
Stenotrophomonas chelatiphaga58264MaizeEarly vigor<0<0
Stenotrophomonas maltophilia612EfficacyEfficacy
43%66%
Stenotrophomonas maltophilia54073MaizeEarly vigor - low N50-60 —
Stenotrophomonas maltophilia54073MaizeEarly vigor<00-10
Stenotrophomonas maltophilia56181MaizeEarly vigor0-10<0
Stenotrophomonas maltophilia54999MaizeEarly vigor0-100-10
Stenotrophomonas maltophilia54850MaizeEarly vigor 00-10
Stenotrophomonas maltophilia54841MaizeEarly vigor<00-10
Stenotrophomonas maltophilia46856MaizeEarly vigor<0<0
Stenotrophomonas rhizophila811EfficacyEfficacy
12.5%37.5%
Stenotrophomonas rhizophila50839MaizeEarly vigor<0<0
Stenotrophomonas rhizophila48183MaizeEarly vigor<0<0
Stenotrophomonas rhizophila45125MaizeEarly vigor<0<0
Stenotrophomonas rhizophila46120MaizeEarly vigor<00-10
Stenotrophomonas rhizophila46012MaizeEarly vigor<0<0
Stenotrophomonas rhizophila51718MaizeEarly vigor0-100-10
Stenotrophomonas rhizophila66478MaizeEarly vigor<0<0
Stenotrophomonas rhizophila65303MaizeEarly vigor<00-10
Stenotrophomonas terrae221EfficacyEfficacy
50%50%
Stenotrophomonas terrae68741MaizeEarly vigor<0<0
Stenotrophomonas terrae68599MaizeEarly vigor<00-10
Stenotrophomonas terrae68599Capsicum *Early vigor20-30 20-30
Stenotrophomonas terrae68741Capsicum *Early vigor10-20 20-30
The data presented in table 15 describes the efficacy with which a microbial species or strain can change a phenotype of interest relative to a control run in the same experiment. Phenotypes measured were shoot fresh weight and root fresh weight for plants growing either in the absence of presence of a stress (assay). For each microbe species, an overall efficacy score indicates the percentage of times a strain of that species increased a both shoot and root fresh weight in independent evaluations. For each species, the specifics of each independent assay is given, providing a strain ID (strain) and the crop species the assay was performed on (crop). For each independent assay the percentage increase in shoot and root fresh weight over the controls is given.