The largest database of trusted experimental protocols

Atmosphere

The envelope of gases surrounding the Earth or another planet, retained by the planet's gravitational field.
For the Earth, it extends from the surface to a height of about 10,000 km.
The atmosphere is a mixture of gases composed primarily of nitrogen, oxygen, carbon dioxide, and water vapor, and it plays an important role in the planet's meteorology and climate.

Most cited protocols related to «Atmosphere»

All of the UM-SCC cell lines were established from head and neck cancer patients who gave written informed consent in studies reviewed and approved by the University of Michigan Medical School Institutional Review Board. Current and early passage human UM-SCC cell lines established at the University of Michigan (1 –3 (link), 5 (link), 30 (link)) were retrieved from liquid nitrogen storage. Cell lines were grown in complete Dulbecco’s Modified Eagle’s Medium (cDMEM) containing 2 mM L-glutamine, 1% nonessential amino acids, 1% Penicillin-Streptomycin (Invitrogen, Carlsbad, CA) and 10% fetal bovine serum, in a humidified atmosphere of 5% CO2 at 37°C. All cell lines were tested for mycoplasma, using the MycoAlert Detection Kit (Cambrex, Rockland, ME). Contaminated cultures were treated with Plasmocin according to the manufacturer’s protocol, and testing was repeated at monthly intervals.
Publication 2010
Amino Acids Atmosphere Cancer of Head and Neck Cell Lines Eagle Ethics Committees, Research Fetal Bovine Serum Glutamine Homo sapiens Mycoplasma Nitrogen Patients Penicillins plasmocin Streptomycin
PBMC (1 × 106/mL) are cultured in RPMI 1640 supplemented with 10% human serum, 2 mM L-glutamine, and 1% penicillin (Invitrogen Ltd, Paisley, UK) and incubated at 37°C in a humidified 5% CO2 atmosphere for 2 h in a 12-well plate. After 2 h, non-adhering PBMCs are harvested and discarded; monocytes (adhering cells) are culture in medium alone (unstimulated) or primed with 2 μg/mL LPS for 2 h (Sigma–Aldrich, St. Louis, MO) before stimulation with Nigericine (5 μM) (Sigma–Aldrich) for 1 h at 37°C in a humidified 5% CO2 atmosphere. Adhering cells (monocytes) are then collected by trypsin treatment and prepared for FlowSight analysis by immunofluorescence staining as THP1-derived macrophage (see above).
Publication 2019
Atmosphere Cells Culture Media Glutamine Homo sapiens Immunofluorescence Macrophage Monocytes Penicillins Serum Trypsin
Fresh or frozen bone marrow cells were used to generate BMDM as previously described [8] (link), using L929-cell conditioned medium (LCCM) as a source of granulocyte/macrophage colony stimulating factor [9] (link). The cells were resuspended in 10 ml bone marrow differentiation media (R20/30), which is RPMI1640 supplemented with 20% fetal bovine serum (Gibco, cat. 12657-029), 30% LCCM, 100 U/ml penicillin, 100 µg/ml streptomycin, and 2 mM L-glutamine. Cells were seeded in non-tissue culture treated Optilux Petri dishes (BD Biosciences) and incubated at 37°C in a 5% CO2 atmosphere. Four days after seeding the cells, an extra 10 ml of fresh R20/30 were added per plate and incubated for an additional 3 days. To obtain the BMDM, the supernatants were discarded and the attached cells were washed with 10 ml of sterile PBS. Ten ml of ice-cold PBS were added to each plate and incubated at 4°C for 10 minutes. The macrophages were detached by gently pipetting the PBS across the dish. The cells were centrifuged at 200× g for 5 minutes and resuspended in 10 ml of BMDM cultivation media (R10/5), which is composed of RPMI 1640, 10% fetal bovine serum, 5% LCCM and 2 mM L-glutamine. The cells were counted, seeded and cultivated in tissue culture plates 12 hours before any further experimental procedure.
Publication 2010
Atmosphere Bone Marrow Bone Marrow Cells Cells Common Cold Culture Media, Conditioned Fetal Bovine Serum Freezing Glutamine Granulocyte-Macrophage Colony-Stimulating Factor Hyperostosis, Diffuse Idiopathic Skeletal L929 Cells Macrophage Penicillins Sterility, Reproductive Streptomycin Tissues
We used Vero CCL-81 cells for isolation and initial passage. We cultured Vero E6, Vero CCL-81, HUH 7.0, 293T, A549, and EFKB3 cells in Dulbecco minimal essential medium (DMEM) supplemented with heat-inactivated fetal bovine serum (5% or 10%) and antibiotics/antimycotics (GIBCO, https://www.thermofisher.com). We used both NP and OP swab specimens for virus isolation. For isolation, limiting dilution, and passage 1 of the virus, we pipetted 50 μL of serum-free DMEM into columns 2–12 of a 96-well tissue culture plate, then pipetted 100 μL of clinical specimens into column 1 and serially diluted 2-fold across the plate. We then trypsinized and resuspended Vero cells in DMEM containing 10% fetal bovine serum, 2× penicillin/streptomycin, 2× antibiotics/antimycotics, and 2× amphotericin B at a concentration of 2.5 × 105 cells/mL. We added 100 μL of cell suspension directly to the clinical specimen dilutions and mixed gently by pipetting. We then grew the inoculated cultures in a humidified 37°C incubator in an atmosphere of 5% CO2 and observed for cytopathic effects (CPEs) daily. We used standard plaque assays for SARS-CoV-2, which were based on SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) protocols (9 (link),10 (link)).
When CPEs were observed, we scraped cell monolayers with the back of a pipette tip. We used 50 μL of viral lysate for total nucleic acid extraction for confirmatory testing and sequencing. We also used 50 μL of virus lysate to inoculate a well of a 90% confluent 24-well plate.
Publication 2020
Amphotericin B Antibiotics Atmosphere Biological Assay Cells Cell Separation Cytopathogenic Effect, Viral Dental Plaque Fetal Bovine Serum isolation Middle East Respiratory Syndrome Coronavirus Penicillins SARS-CoV-2 Serum Severe acute respiratory syndrome-related coronavirus Streptomycin Technique, Dilution Tissues Vero Cells Virus
One hour after infecting the cell monolayers with 30–50 plaque forming units of the virus in 1 ml of maintenance medium without trypsin, we removed the virus inoculum, covered the cells with 3 ml of the different overlay media and incubated cultures at 35°C in 5% CO2 atmosphere. In the case of MC and Avicel overlays, care was taken not to disturb the plates during the incubation period in order to avoid formation of non-even plaques. After three days of incubation, we removed the overlays and fixed the cells. Agar overlay was removed using metal spatula; MC, Avicel, and liquid overlays were removed by suction. The cells were fixed with 4% paraformaldehyde solution in MEM for 30 min at 4°C and washed with PBS. All subsequent treatments of the cells were performed at room temperature. We permeabilized the cells and simultaneously blocked residual aldehyde groups by incubating the cells for 10–20 min with 1 ml/well of solution containing 0.5 % Triton-X-100 and 20 mM glycine in PBS. We immuno-stained virus-infected cells by incubating for 1 hr with monoclonal antibodies specific for the influenza A virus nucleoprotein (kindly provided by Dr. Alexander Klimov at Centers for Disease Control, USA) followed by 1 hr incubation with peroxidase-labeled anti-mouse antibodies (DAKO, Denmark) and 30 min incubation with precipitate-forming peroxidase substrates. Solution of 10% normal horse serum and 0.05% Tween-80 in PBS was used for the preparation of working dilutions of immuno-reagents. We washed the cells after the primary and secondary antibodies by incubating them three times for 3–5 min with 0.05% Tween-80 in PBS. As peroxidase substrates, we employed either ready to use True Blue™ (KPL) or solution of aminoethylcarbazole (AEC, Sigma) (0.4 mg/ml) prepared in 0.05 M sodium acetate buffer, pH 5.5 and containing 0.03% H2O2. Stained plates were washed with tap water to stop the reaction and dried. In the case of True Blue staining, which is relatively unstable in water solutions, plates were dried inverted in order to minimize bleaching. Stained plates were scanned on a flat bed scanner and the data were acquired by Adobe Photoshop 7.0 software.
As an alternative to immuno-staining, in some experiments we revealed plaques as areas of destroyed cells. To this end, after removing the overlays, we stained the cells with 1% crystal violet solution in 20% methanol in water.
Publication 2006
Agar Aldehydes Anti-Antibodies Antibodies Atmosphere Avicel Buffers Dental Plaque Equus caballus Glycine Metals Methanol Monoclonal Antibodies Mus NP protein, Influenza A virus paraform Peroxidase Peroxide, Hydrogen Senile Plaques Serum Sodium Acetate Suction Drainage Technique, Dilution Triton X-100 true blue Trypsin Tween 80 Violet, Gentian Virus

Most recents protocols related to «Atmosphere»

Not available on PMC !

Example 26

[Figure (not displayed)]

Synthesis of 169-A.

A mixture of tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (750 mg, 3.54 mmol), 1-methylpiperidin-4-one (800 mg, 7.08 mmol) and acetic acid (2 drops) in DCE (15 mL) was stirred at 50° C. for 2 h. Then Sodium triacetoxyborohydride (1.50 g, 7.08 mmol) was added into above mixture and stirred at 50° C. for another 2 h. After the reaction was completed according to LCMS, the solvent was diluted with water (10 mL) and then extracted by DCM (10 mL×3). The combined organics washed with brine (10 mL×3), dried over anhydrous Na2SO4 and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜50:1) to give 169-A (750 mg, 69%) as a yellow oil.

Synthesis of 169-B.

A solution of 169-A (400 mg, 1.29 mmol) in DCM (10 mL) was added TFA (5 mL) and stirred at room temperature for 1 h. when LCMS showed the reaction was finished. The solvent was removed in vacuo to give 169-B as a crude product and used to next step directly.

Synthesis of 169-C.

A mixture of 143-C (306 mg, 0.65 mmol) and 169-B (crude product from last step) in acetonitrile (6 mL) was stirred at 50° C. for 30 min. Then Na2CO3 (624 mg, 6.50 mmol) was added into above mixture and stirred at 50° C. for 3 h. After the reaction was completed according to LCMS, the mixture was cooled to room temperature. The Na2CO3 was removed by filtered. The filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜20:1) to give 169-C (230 mg, 76%) as a yellow solid.

Synthesis of 169.

A mixture of 169-C (230 mg, 0.49 mmol) and Pd/C (230 mg) in MeOH (10 mL) was stirred at room temperature for 30 min under H2 atmosphere. Pd/C was then removed by filtration through the Celite. The filtrate was concentrated and the residue was purified by Pre-TLC (DCM:MeOH=10:1) to give 169 (150 mg, 70%) as a white solid.

Compounds 152, 182, 199, 201, 202, 203, 235, 236 and 256 were synthesized in a similar manner using the appropriately substituted aldehyde or ketone variant of 169.

Compound 152.

50 mg, 36%, a light yellow solid.

Compound 182.

70 mg, 38%, a red solid.

Compound 199.

50 mg, 54%, a light yellow solid.

Compound 201.

30 mg, 42%, as a yellow solid.

Compound 202.

30 mg, 42%, a yellow solid.

Compound 203.

30 mg, 18%, a yellow solid.

Compound 235.

170 mg, 87%, a white solid.

Compound 236.

70 mg, 50%, a white solid.

Compound 256.

20 mg, 8%, a light yellow solid.

Compounds 210, 211, 215, 222, 223, 242 and 262 were synthesized in a similar manner using the appropriately substituted amine variant of 169.

Compound 210.

160 mg, 96%, a tan solid.

Compound 211.

70 mg, 40%, a white solid

Compound 215.

70 mg, 75%, a white solid.

Compound 222.

30 mg, 42%, a yellow solid.

Compound 223.

35 mg, 31%, a white solid.

Compound 242.

50 mg, 34%, a white solid.

Compound 262.

38 mg, 43%, a white solid.

Patent 2024
Acetic Acid acetonitrile Aldehydes Amines Anabolism Atmosphere brine Celite Chromatography compound 26 compound 235 Filtration Ketones Light Lincomycin Pyrrole Silica Gel Sodium Solvents TERT protein, human
Not available on PMC !

Example 1

InCl (1 eq.) was added to a Schlenk flask charged with LiCp(CH2)3NMe2 (11 mmol) in Et2O (50 mL). The reaction mixture was stirred overnight at room temperature. After filtration of the reaction mixture, the solvent was evaporated under reduced pressure to obtain a red oil. After distillation a yellow liquid final product was collected (mp˜5° C.). Various measurements were done to the final product. 1H NMR (C6D6, 400 MHz): δ 5.94 (t, 2H, Cp-H), 5.82 (t, 2H, Cp-H), 2.52 (t, 2H, N—CH2—), 2.21 (t, 2H, Cp-CH2—), 2.09 (s, 6H, N(CH3)2, 1.68 (q, 2H, C—CH2—C). Thermogravimetric (TG) measurement was carried out under the following measurement conditions: sample weight: 22.35 mg, atmosphere: N2 at 1 atm, and rate of temperature increase: 10.0° C./min. 97.2% of the compound mass had evaporated up to 250° C. (Residue <2.8%). T (50%)=208° C. Vacuum TG measurement was carried out under delivery conditions, under the following measurement conditions: sample weight: 5.46 mg, atmosphere: N2 at 20 mbar, and rate of temperature increase: 10.0° C./min. TG measurement was carried out under delivery conditions into the reactor (about 20 mbar). 50% of the sample mass is evaporated at 111° C.

Using In(Cp(CH2)3NMe2) synthesized in Example 1 as an indium precursor and H2O and O3 as reaction gases, indium oxide film may be formed on a substrate by ALD method under the following deposition conditions. First step, a cylinder filled with In(Cp(CH2)3NMe2) is heated to 90° C., bubbled with 100 sccm of N2 gas and the In(Cp(CH2)3NMe2) is introduced into a reaction chamber (pulse A). Next step, O3 generated by an ozone generator is supplied with 50 sccm of N2 gas and introduced into the reaction chamber (pulse B). Following each step, a 4 second purge step using 200 sccm of N2 as a purge gas was performed to the reaction chamber. 200 cycles were performed on a Si substrate having a substrate temperature of 150° C. in the reaction chamber at a pressure of about 1 torr. As a result, an indium oxide film will be obtained at approximately 150° C.

Example 2

Same procedure as Example 1 started from Li(CpPiPr2) was performed to synthesize In(CpPiPr2). An orange liquid was obtained. 1H NMR (C6D6, 400 MHz): δ 6.17 (t, 2H, Cp-H), 5.99 (t, 2H, Cp-H), 1.91 (sept, 2H, P—CH—), 1.20-1.00 (m, 12H, C—CH3).

Using In(CpPiPr2) synthesized in Example 2 as the indium precursor and H2O and O3 as the reaction gases, indium oxide film may be formed on a substrate by the ALD method under the following deposition conditions. First step, a cylinder filled with In(CpPiPr2) is heated to 90° C., bubbled with 100 sccm of N2 gas and the In(CpPiPr2) is introduced into a reaction chamber (pulse A). Next step, O3 generated by an ozone generator is supplied with 50 sccm of N2 gas and introduced into the reaction chamber (pulse B). Following each step, a 4 second purge step using 200 sccm of N2 as a purge gas was performed to the reaction chamber. 200 cycles were performed on the Si substrate having a substrate temperature of 150° C. in an ALD chamber at a pressure of about 1 torr. As a result, an indium oxide was obtained at 150° C.

Patent 2024
1H NMR Atmosphere Distillation Fever Filtration Indium indium oxide Obstetric Delivery Ozone Pressure Pulse Rate Solvents Vacuum

Example 49

The functional activity of compounds was determined in a cell line where p70S6K is constitutively activated. Test article was dissolved in DMSO to make a 10 μM stock. PathScan® Phospho-S6 Ribosomal Protein (Ser235/236) Sandwich ELISA Kit was purchased from Cell Signaling Technology. A549 lung cancer cell line, was purchased from American Type Culture Collection. A549 cells were grown in F-12K Medium supplemented with 10% FBS. 100 μg/mL penicillin and 100 μg/mL streptomycin were added to the culture media. Cultures were maintained at 37° C. in a humidified atmosphere of 5% CO2 and 95% air. 2.0×105 cells were seeded in each well of 12-well tissue culture plates for overnight. Cells were treated with DMSO or test article (starting at 100 μM, 10-dose with 3 fold dilution) for 3 hours. The cells were washed once with ice cold PBS and lysed with 1× cell lysis buffer. Cell lysates were collected and samples were added to the appropriate wells of the ELISA plate. Plate was incubated for overnight at 4° C. 100 μL of reconstituted Phospho-S6 Ribosomal Protein (Ser235/236) Detection Antibody was added to each well and the plate was incubated at 37° C. for 1 hour. Wells were washed and 100 μl of reconstituted HRP-Linked secondary antibody was added to each well. The plate was incubated for 30 minutes at 37° C. Wash procedure was repeated and 100 μL of TMB Substrate was added to each well. The plate was incubated for 10 minutes at 37° C. 100 μL of STOP Solution was added to each well and the absorbance was read at 460 nm using Envision 2104 Multilabel Reader (PerkinElmer, Santa Clara, CA). IC50 curves were plotted and IC50 values were calculated using the GraphPad Prism 4 program based on a sigmoidal dose-response equation.

TABLE 2
In vitro biological data for representative compounds of Formula
I-IX Unless otherwise noted, compounds that were tested had an IC50
of less than 50 μM in the S6K binding assay.
Example NumberS6K Binding Activity
1A
2B
3B
4A
5A
6A
7A
8A
9B
10B
11B
12C
13C
14C
15A
16A
17B
18A
19A
20A
21A
22C
23B
24A
25A
26C
27A
28C
29C
30C
31A
32A
33C
34C
35C
36C
37C
38A
39A
40A
41A

Unless otherwise noted, compounds that were tested had an IC50 of less than 50 μM in the S6K Binding assay. A=less than 0.05 μM; B=greater than 0.05 μM and less than 0.5 μM; C=greater than 0.5 μM and less than 10 μM;

Patent 2024
A549 Cells Atmosphere Biological Assay Biopharmaceuticals Buffers Cell Lines Cells Cold Temperature Culture Media Enzyme-Linked Immunosorbent Assay Immunoglobulins Lung Cancer Penicillins prisma Psychological Inhibition Ribosomal Proteins Ribosomal Protein S6 Ribosomal Protein S6 Kinases, 70-kDa Streptomycin Sulfoxide, Dimethyl Technique, Dilution Tissues

Example 1

95 g of manganese (purity: 99.95%; purchased from Taewon Scientific Co., Ltd.) and 5 g of high-purity graphite (purity: 99.5%; purchased from Taewon Scientific Co., Ltd.) were placed in a water-cooled copper crucible of an argon plasma arc melting apparatus (manufactured by Labold AG, Germany, Model: vacuum arc melting furnace Model LK6/45), and melted at 2,000 K under an argon atmosphere. The melt was cooled to room temperature at a cooling rate of 104 K/min to obtain an alloy ingot. The alloy ingot was crushed to a particle size of 1 mm or less by hand grinding. Thereafter, the obtained powders were magnetically separated using a Nd-based magnet to remove impurities repeatedly, and the Mn4C magnetic powders were collected. The collected Mn4C magnetic powders were subjected to X-ray diffraction (XRD) analysis (measurement system: D/MAX-2500 V/PO, Rigaku; measurement condition: Cu—Kα ray) and energy-dispersive X-ray spectroscopy (EDS) using FE-SEM (Field Emission Scanning Electron Microscope, MIRA3 LM).

FIGS. 2(a) and 2 (b) show an X-ray diffraction pattern and an energy-dispersive X-ray spectroscopy graph of the Mn4C magnetic material produced according to Example 1 of the present disclosure, respectively.

As can be seen in FIG. 2(a), the Mn4C magnetic material showed diffraction peaks of (111), (200), (220), (311) and (222) crystal planes at 2θ values of 40°, 48°, 69°, 82° and 88°, respectively, in the XRD analysis. Thus, it can be seen that the XRD patterns of the Mn4C magnetic material produced according to Example 1 are well consistent with the patterns of the cubic perovskite Mn4C. In addition, the Mn4C magnetic material shows several very weak diffraction peaks that can correspond to Mn23C6 and Mn. That is, the diffraction peak intensity at 2θ values of 43° and 44°, which correspond to Mn and Mn23C6 impurities, is as very low as about 2.5% of the diffraction intensity of the peak corresponding to the (111) plane. Through this, it can be seen that the powders obtained in Example 1 have high-purity Mn4C phase. The lattice parameter of the Mn4C is estimated to be about 3.8682 Å.

FIG. 2(b) shows the results of analyzing the atomic ratio of Mn:C in the powder by EDS. The atomic ratio of Mn:C is 80.62:19.38, which is very close to 4:1 within the experimental uncertainties. Thus, it can be seen that the powder is also confirmed to be Mn4C.

The M-T curve of the field aligned Mn4C powder obtained in Example 1 was measured under an applied field of 4 T and at a temperature ranging from 50 K to 400 K. Meanwhile, the M-T curve of the randomly oriented Mn4C powder was measured under an applied field of 1 T. The Curie temperature of Mn4C was measured under 10 mT while decreasing temperature from 930 K at a rate of 20 K/min.

FIGS. 3(a) to 3(c) show the M-T curves of the Mn4C magnetic material, produced according to Example 1 of the present disclosure, under magnetic fields of 4 T, 1 T, and 10 mT, respectively.

FIG. 3 shows magnetization-temperature (M-T) curves indicating the results of measuring the temperature-dependent magnetization intensity of the Mn4C magnetic material, produced in Example 1, using the vibrating sample magnetometer (VSM) mode of Physical Property Measurement System (PPMS®) (Quantum Design Inc.).

According to the Néel theory, the ferrimagnets that contain nonequivalent substructures of magnetic ions may have a number of unusual forms of M-T curves below the Curie temperature, depending on the distribution of magnetic ions between the substructures and on the relative value of the molecular field coefficients. The anomalous M-T curves of Mn4C, as shown in FIG. 3(a), can be explained to some extent by the Néel's P-type ferrimagnetism, which appears when the sublattice with smaller moment is thermally disturbed more easily. For Mn4C with two sublattices of MnI and MnII, as shown in FIG. 1, the MnI sublattice might have smaller moment.

FIG. 3(a) shows the temperature dependence of magnetization of the Mn4C magnetic material produced in Example 1. The magnetization of Mn4C measured at 4.2K is 6.22 Am2/kg (4 T), corresponding to 0.258μB per unit cell. The magnetization of the Mn4C magnetic material varies little at temperatures below 50 K, and is quite different from that of most magnetic materials, which undergo a magnetization deterioration with increasing temperature due to thermal agitation. Furthermore, the magnetization of the Mn4C magnetic material increases linearly with increasing temperature at temperatures above 50 K. The linear fitting of the magnetization of Mn4C at 4 T within the temperature range of 100 K to 400 K can be written as M=0.0072T+5.6788, where M and T are expressed in Am2/kg and K, respectively. Thus, the temperature coefficient of magnetization of Mn4C is estimated to be about ˜2.99*10−4μB/K per unit cell. The mechanisms of the anomalous thermomagnetic behaviors of Mn4C may be related to the magnetization competition of the two ferromagnetic sublattices (MnI and MnII) as shown in FIG. 1.

FIG. 3(b) shows the M-T curves of the Mn4C powders at temperatures within the range of 300 K to 930 K under 1 T. The linear magnetization increment stops at 590 K, above which the magnetization of Mn4C starts to decrease slowly first and then sharply at a temperature of about 860 K. The slow magnetization decrement at temperatures above 590 K is ascribed to the decomposition of Mn4C, which is proved by further heat-treatment of Mn4C as described below.

According to one embodiment of the present disclosure, the saturation magnetization of Mn4C increases linearly with increasing temperature within the range of 50 K to 590 K and remains stable at temperatures below 50 K. The increases in anomalous magnetization of Mn4C with increasing temperature can be considered in terms of the Néel's P-type ferrimagnetism. At temperatures above 590 K, the Mn4C decomposes into Mn23C6 and Mn, which are partially oxidized into the manganosite when exposed to air. The remanent magnetization of Mn4C varies little with temperature. The Curie temperature of Mn4C is about 870 K. The positive temperature coefficient (about 0.0072 Am2/kgK) of magnetization in Mn4C is potentially important in controlling the thermodynamics of magnetization in magnetic materials.

The Curie temperature Te of Mn4C is measured to be about 870 K, as shown in FIG. 3(c). Therefore, the sharp magnetization decrement of Mn4C at temperatures above 860 K is ascribed to both the decomposition of Mn4C and the temperature near the Tc of Mn4C.

FIG. 4 is a graph showing the magnetic hysteresis loops of the Mn4C magnetic material, produced according to Example 1 of the present disclosure, at 4.2 K, 200 K and 400 K. The magnetic hysteresis loops were measured by using the PPMS system (Quantum Design) under a magnetic field of 7 T while the temperature was changed from 4 K to 400 K.

As shown in FIG. 4, the positive temperature coefficient of magnetization was further proved by the magnetic hysteresis loops of Mn4C as shown in FIG. 4. The Mn4C shows a much higher magnetization at 400 K than that at 4.2 K. Moreover, the remanent magnetization of Mn4C varies little with temperature and is Δ3.5 Am2/kg within the temperature range of 4.2 K to 400 K. The constant remanent magnetization of Mn4C within a wide temperature range indicates the high stability of magnetization against thermal agitation. The coercivities of Mn4C at 4.2 K, 200 K, and 400 K were 75 mT, 43 mT, and 33 mT, respectively.

The magnetic properties of Mn4C measured are different from the previous theoretical results. A corner MnI moment of 3.85μB antiparallel to three face-centered MnII moments of 1.23μB in Mn4C was expected at 77 K. The net moment per unit cell was estimated to be 0.16μB. In the above experiment, the net moment in pure Mn4C at 77 K is 0.26μB/unit cell, which is much larger than that expected by Takei et al. It was reported that the total magnetic moment of Mn4C was calculated to be about 1μB, which is almost four times larger than the 0.258μB per unit cell measured at 4.2 K, as shown in FIG. 4.

FIG. 5 is an enlarged view of the temperature-dependent XRD patterns of the Mn4C magnetic material produced according to Example 1 of the present disclosure.

The thermomagnetic behaviors of Mn4C are related to the variation in the lattice parameters of Mn4C with temperature. It is known that the distance of near-neighbor manganese atoms plays an important role in the antiferro- or ferro-magnetic configurations of Mn atoms. Ferromagnetic coupling of Mn atoms is possible only when the Mn—Mn distance is large enough. FIG. 5 shows the diffraction peaks of the (111) and (200) planes of Mn4C at temperatures from 16 K to 300 K. With increasing temperature, both (111) and (200) peaks of Mn4C shifted to a lower degree at temperatures between 50 K and 300 K, indicating an enlarged distance of Mn—Mn atoms in Mn4C. No peak shift is obviously observed for Mn4C at temperatures below 50 K. The distance of nearest-neighbor manganese atoms plays an important role in the antiferro- or ferro-magnetic configurations of Mn atoms and thus has a large effect on the magnetic properties of the compounds.

Thus, it can be seen that the abnormal increase in magnetization of Mn4C with increasing temperature occurs due to the variation in the lattice parameters of Mn4C with temperature.

The powder produced in Example 1 was annealed in vacuum for 1 hour at each of 700 K and 923 K, and then subjected to X-ray spectroscopy, and the results thereof are shown in FIG. 6.

The magnetization reduction of Mn4C at temperatures above 590 K is ascribed to the decomposition of Mn4C, which is proved by the XRD patterns of the powders after annealing Mn4C at elevated temperatures. FIG. 6 shows the structural evolution of Mn4C at elevated temperatures. When Mn4C is annealed at 700 K, a small fraction of Mn4C decomposes into a small amount of Mn23C6 and Mn. The presence of manganosite is ascribed to the spontaneous oxidation of the Mn precipitated from Mn4C when exposed to air after annealing. The fraction of Mn23C6 was enhanced significantly for Mn4C annealed at 923 K, as shown in FIG. 6.

These results prove that the metastable Mn4C decomposes into stable Mn23C6 at temperatures above 590 K. The presence of Mn4C in the powder annealed at 923 K indicates a limited decomposition rate of Mn4C, from which the Tc of Mn4C can be measured. Both Mn23C6 and Mn are weak paramagnets at ambient temperature and elevated temperatures. Therefore, the magnetic transition of the Mn4C magnetic material at 870 K is ascribed to the Curie point of the ferrimagnetic Mn4C.

The Mn4C shows a constant magnetization of 0.258μB per unit cell below 50 K and a linear increment of magnetization with increasing temperature within the range of 50 K to 590 K, above which Mn23C6 precipitates from Mn4C. The anomalous M-T curves of Mn4C can be considered in terms of the Néel's P-type ferrimagnetism.

Patent 2024
Alloys Argon Atmosphere Biological Evolution Cells Copper Cuboid Bone Debility Energy Dispersive X Ray Spectroscopy Face Fever fluoromethyl 2,2-difluoro-1-(trifluoromethyl)vinyl ether Graphite Ions Magnetic Fields Manganese perovskite Physical Processes Plasma Powder Radiography Scanning Electron Microscopy Spectrum Analysis Vacuum Vision X-Ray Diffraction
Not available on PMC !

Example 250

The structure of the compound of Example 250 is depicted in FIG. 1.

The structure of the compound of Example 250 is depicted in FIG. 1.

(+)-Sodium L-ascorbate (4.7 mg, 0.02 mmol) was added to a solution of the foregoing compound (25 mg, 0.01 mmol), N-but-3-yn-1-yl-N2,N6-dipent-4-ynoyl-L-lysinamide (2.103 mg, 5.88 μmol) and CuSO4.5H2O (5.88 mg, 0.02 mmol) in t-BuOH (5 mL)/H2O (10 mL) under N2 atmosphere. The solution turned milky. After 4 hours the reaction was quenched with aqueous Na2CO3 (10%, 0.050 mL, 0.05 mmol) and filtered. The filtrate was lyophilized and the residue was purified by preparative RP-HPLC (Column: Waters XSelect CSH C18 ODB 5 μm 150×19 mm; mobile phase: A—H2O/TFA 100/0.15 and B—MeCN with a gradient 5% B for 0.5 min, 5-36% B in 1.5 min, 36-41% B in 14 min; flow 30 mL/min at rt, detection 230 nm) to give the title compound (6.8 mg, 9%). HRMS: calculated for (C305H432F3N81O72S9+4H)4+1682.5096; found (ESI [M+4H]4+) 1682.5154, purity 97%.

Patent 2024
Atmosphere High-Performance Liquid Chromatographies Ligands Milk Peptides Sodium Ascorbate

Top products related to «Atmosphere»

Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Japan, Australia, Switzerland, Italy, Israel, Belgium, Austria, Spain, Brazil, Netherlands, Gabon, Denmark, Poland, Ireland, New Zealand, Sweden, Argentina, India, Macao, Uruguay, Portugal, Holy See (Vatican City State), Czechia, Singapore, Panama, Thailand, Moldova, Republic of, Finland, Morocco
Penicillin is a type of antibiotic used in laboratory settings. It is a broad-spectrum antimicrobial agent effective against a variety of bacteria. Penicillin functions by disrupting the bacterial cell wall, leading to cell death.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Australia, Japan, Switzerland, Italy, Belgium, Israel, Austria, Spain, Netherlands, Poland, Brazil, Denmark, Argentina, Sweden, New Zealand, Ireland, India, Gabon, Macao, Portugal, Czechia, Singapore, Norway, Thailand, Uruguay, Moldova, Republic of, Finland, Panama
Streptomycin is a broad-spectrum antibiotic used in laboratory settings. It functions as a protein synthesis inhibitor, targeting the 30S subunit of bacterial ribosomes, which plays a crucial role in the translation of genetic information into proteins. Streptomycin is commonly used in microbiological research and applications that require selective inhibition of bacterial growth.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in United States, China, Germany, United Kingdom, Japan, France, Canada, Australia, Italy, Switzerland, Belgium, New Zealand, Spain, Israel, Sweden, Denmark, Macao, Brazil, Ireland, India, Austria, Netherlands, Holy See (Vatican City State), Poland, Norway, Cameroon, Hong Kong, Morocco, Singapore, Thailand, Argentina, Taiwan, Province of China, Palestine, State of, Finland, Colombia, United Arab Emirates
RPMI 1640 medium is a commonly used cell culture medium developed at Roswell Park Memorial Institute. It is a balanced salt solution that provides essential nutrients, vitamins, and amino acids to support the growth and maintenance of a variety of cell types in vitro.
Sourced in United States, China, United Kingdom, Germany, France, Canada, Japan, Australia, Italy, Switzerland, Belgium, New Zealand, Austria, Netherlands, Israel, Sweden, Denmark, India, Ireland, Spain, Brazil, Norway, Argentina, Macao, Poland, Holy See (Vatican City State), Mexico, Hong Kong, Portugal, Cameroon
RPMI 1640 is a common cell culture medium used for the in vitro cultivation of a variety of cells, including human and animal cells. It provides a balanced salt solution and a source of essential nutrients and growth factors to support cell growth and proliferation.
Sourced in United States, Germany, United Kingdom, Japan, Italy, China, Macao, Switzerland, France, Canada, Sao Tome and Principe, Spain, Australia, Ireland, Poland, Belgium, Denmark, India, Sweden, Israel, Austria, Brazil, Czechia, Netherlands, Portugal, Norway, Holy See (Vatican City State), New Zealand, Hungary, Senegal, Argentina, Thailand, Singapore, Ukraine, Mexico
FBS, or Fetal Bovine Serum, is a commonly used cell culture supplement. It is derived from the blood of bovine fetuses and provides essential growth factors, hormones, and other nutrients to support the growth and proliferation of a wide range of cell types in vitro.
Sourced in United States, United Kingdom, Germany, France, Canada, Switzerland, Italy, Australia, Belgium, China, Japan, Austria, Spain, Brazil, Israel, Sweden, Ireland, Netherlands, Gabon, Macao, New Zealand, Holy See (Vatican City State), Portugal, Poland, Argentina, Colombia, India, Denmark, Singapore, Panama, Finland, Cameroon
L-glutamine is an amino acid that is commonly used as a dietary supplement and in cell culture media. It serves as a source of nitrogen and supports cellular growth and metabolism.
Sourced in United States, China, Germany, United Kingdom, Canada, Japan, France, Italy, Switzerland, Australia, Spain, Belgium, Denmark, Singapore, India, Netherlands, Sweden, New Zealand, Portugal, Poland, Israel, Lithuania, Hong Kong, Argentina, Ireland, Austria, Czechia, Cameroon, Taiwan, Province of China, Morocco
Lipofectamine 2000 is a cationic lipid-based transfection reagent designed for efficient and reliable delivery of nucleic acids, such as plasmid DNA and small interfering RNA (siRNA), into a wide range of eukaryotic cell types. It facilitates the formation of complexes between the nucleic acid and the lipid components, which can then be introduced into cells to enable gene expression or gene silencing studies.

More about "Atmosphere"

The Earth's atmosphere is the layer of gases that surrounds the planet and is retained by its gravitational field.
This vital envelope of air extends from the surface to a height of approximately 10,000 kilometers.
The atmosphere is primarily composed of nitrogen, oxygen, carbon dioxide, and water vapor, and it plays a crucial role in the planet's weather patterns and climate.
The atmosphere protects life on Earth by absorbing ultraviolet solar radiation, warming the surface through heat retention (the greenhouse effect), and reducing temperature extremes between day and night.
It also plays a key role in the water cycle, allowing for the formation of clouds, precipitation, and other meteorological phenomena.
The composition and structure of the atmosphere can be further divided into distinct layers, including the troposphere, stratosphere, mesosphere, and thermosphere.
Each layer has unique characteristics and serves a specific function in maintaining the delicate balance of our planetary ecosystem.
Beyond Earth, many other planets and celestial bodies in our solar system also have their own unique atmospheres, which can vary greatly in composition and density.
Understanding the atmospheric properties of these extraterrestrial environments is crucial for the study of planetary science and the search for habitable worlds.
In the context of cell culture and biological research, terms like FBS (Fetal Bovine Serum), DMEM (Dulbecco's Modified Eagle Medium), Penicillin, Streptomycin, Penicillin/Streptomycin, RPMI 1640 medium, RPMI 1640, L-glutamine, and Lipofectamine 2000 are commonly used to describe the various components and media used to support the growth and maintenance of cells in laboratory settings.
These elements, while not directly related to the Earth's atmosphere, are important factors in the successful cultivation and experimentation of living organisms.