Atmosphere
For the Earth, it extends from the surface to a height of about 10,000 km.
The atmosphere is a mixture of gases composed primarily of nitrogen, oxygen, carbon dioxide, and water vapor, and it plays an important role in the planet's meteorology and climate.
Most cited protocols related to «Atmosphere»
When CPEs were observed, we scraped cell monolayers with the back of a pipette tip. We used 50 μL of viral lysate for total nucleic acid extraction for confirmatory testing and sequencing. We also used 50 μL of virus lysate to inoculate a well of a 90% confluent 24-well plate.
As an alternative to immuno-staining, in some experiments we revealed plaques as areas of destroyed cells. To this end, after removing the overlays, we stained the cells with 1% crystal violet solution in 20% methanol in water.
Most recents protocols related to «Atmosphere»
Example 26
Synthesis of 169-A.
A mixture of tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (750 mg, 3.54 mmol), 1-methylpiperidin-4-one (800 mg, 7.08 mmol) and acetic acid (2 drops) in DCE (15 mL) was stirred at 50° C. for 2 h. Then Sodium triacetoxyborohydride (1.50 g, 7.08 mmol) was added into above mixture and stirred at 50° C. for another 2 h. After the reaction was completed according to LCMS, the solvent was diluted with water (10 mL) and then extracted by DCM (10 mL×3). The combined organics washed with brine (10 mL×3), dried over anhydrous Na2SO4 and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜50:1) to give 169-A (750 mg, 69%) as a yellow oil.
Synthesis of 169-B.
A solution of 169-A (400 mg, 1.29 mmol) in DCM (10 mL) was added TFA (5 mL) and stirred at room temperature for 1 h. when LCMS showed the reaction was finished. The solvent was removed in vacuo to give 169-B as a crude product and used to next step directly.
Synthesis of 169-C.
A mixture of 143-C (306 mg, 0.65 mmol) and 169-B (crude product from last step) in acetonitrile (6 mL) was stirred at 50° C. for 30 min. Then Na2CO3 (624 mg, 6.50 mmol) was added into above mixture and stirred at 50° C. for 3 h. After the reaction was completed according to LCMS, the mixture was cooled to room temperature. The Na2CO3 was removed by filtered. The filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜20:1) to give 169-C (230 mg, 76%) as a yellow solid.
Synthesis of 169.
A mixture of 169-C (230 mg, 0.49 mmol) and Pd/C (230 mg) in MeOH (10 mL) was stirred at room temperature for 30 min under H2 atmosphere. Pd/C was then removed by filtration through the Celite. The filtrate was concentrated and the residue was purified by Pre-TLC (DCM:MeOH=10:1) to give 169 (150 mg, 70%) as a white solid.
Compounds 152, 182, 199, 201, 202, 203, 235, 236 and 256 were synthesized in a similar manner using the appropriately substituted aldehyde or ketone variant of 169.
Compound 152.
50 mg, 36%, a light yellow solid.
Compound 182.
70 mg, 38%, a red solid.
Compound 199.
50 mg, 54%, a light yellow solid.
Compound 201.
30 mg, 42%, as a yellow solid.
Compound 202.
30 mg, 42%, a yellow solid.
Compound 203.
30 mg, 18%, a yellow solid.
Compound 235.
170 mg, 87%, a white solid.
Compound 236.
70 mg, 50%, a white solid.
Compound 256.
20 mg, 8%, a light yellow solid.
Compounds 210, 211, 215, 222, 223, 242 and 262 were synthesized in a similar manner using the appropriately substituted amine variant of 169.
Compound 210.
160 mg, 96%, a tan solid.
Compound 211.
70 mg, 40%, a white solid
Compound 215.
70 mg, 75%, a white solid.
Compound 222.
30 mg, 42%, a yellow solid.
Compound 223.
35 mg, 31%, a white solid.
Compound 242.
50 mg, 34%, a white solid.
Compound 262.
38 mg, 43%, a white solid.
Example 1
InCl (1 eq.) was added to a Schlenk flask charged with LiCp(CH2)3NMe2 (11 mmol) in Et2O (50 mL). The reaction mixture was stirred overnight at room temperature. After filtration of the reaction mixture, the solvent was evaporated under reduced pressure to obtain a red oil. After distillation a yellow liquid final product was collected (mp˜5° C.). Various measurements were done to the final product. 1H NMR (C6D6, 400 MHz): δ 5.94 (t, 2H, Cp-H), 5.82 (t, 2H, Cp-H), 2.52 (t, 2H, N—CH2—), 2.21 (t, 2H, Cp-CH2—), 2.09 (s, 6H, N(CH3)2, 1.68 (q, 2H, C—CH2—C). Thermogravimetric (TG) measurement was carried out under the following measurement conditions: sample weight: 22.35 mg, atmosphere: N2 at 1 atm, and rate of temperature increase: 10.0° C./min. 97.2% of the compound mass had evaporated up to 250° C. (Residue <2.8%). T (50%)=208° C. Vacuum TG measurement was carried out under delivery conditions, under the following measurement conditions: sample weight: 5.46 mg, atmosphere: N2 at 20 mbar, and rate of temperature increase: 10.0° C./min. TG measurement was carried out under delivery conditions into the reactor (about 20 mbar). 50% of the sample mass is evaporated at 111° C.
Using In(Cp(CH2)3NMe2) synthesized in Example 1 as an indium precursor and H2O and O3 as reaction gases, indium oxide film may be formed on a substrate by ALD method under the following deposition conditions. First step, a cylinder filled with In(Cp(CH2)3NMe2) is heated to 90° C., bubbled with 100 sccm of N2 gas and the In(Cp(CH2)3NMe2) is introduced into a reaction chamber (pulse A). Next step, O3 generated by an ozone generator is supplied with 50 sccm of N2 gas and introduced into the reaction chamber (pulse B). Following each step, a 4 second purge step using 200 sccm of N2 as a purge gas was performed to the reaction chamber. 200 cycles were performed on a Si substrate having a substrate temperature of 150° C. in the reaction chamber at a pressure of about 1 torr. As a result, an indium oxide film will be obtained at approximately 150° C.
Example 2
Same procedure as Example 1 started from Li(CpPiPr2) was performed to synthesize In(CpPiPr2). An orange liquid was obtained. 1H NMR (C6D6, 400 MHz): δ 6.17 (t, 2H, Cp-H), 5.99 (t, 2H, Cp-H), 1.91 (sept, 2H, P—CH—), 1.20-1.00 (m, 12H, C—CH3).
Using In(CpPiPr2) synthesized in Example 2 as the indium precursor and H2O and O3 as the reaction gases, indium oxide film may be formed on a substrate by the ALD method under the following deposition conditions. First step, a cylinder filled with In(CpPiPr2) is heated to 90° C., bubbled with 100 sccm of N2 gas and the In(CpPiPr2) is introduced into a reaction chamber (pulse A). Next step, O3 generated by an ozone generator is supplied with 50 sccm of N2 gas and introduced into the reaction chamber (pulse B). Following each step, a 4 second purge step using 200 sccm of N2 as a purge gas was performed to the reaction chamber. 200 cycles were performed on the Si substrate having a substrate temperature of 150° C. in an ALD chamber at a pressure of about 1 torr. As a result, an indium oxide was obtained at 150° C.
Example 49
The functional activity of compounds was determined in a cell line where p70S6K is constitutively activated. Test article was dissolved in DMSO to make a 10 μM stock. PathScan® Phospho-S6 Ribosomal Protein (Ser235/236) Sandwich ELISA Kit was purchased from Cell Signaling Technology. A549 lung cancer cell line, was purchased from American Type Culture Collection. A549 cells were grown in F-12K Medium supplemented with 10% FBS. 100 μg/mL penicillin and 100 μg/mL streptomycin were added to the culture media. Cultures were maintained at 37° C. in a humidified atmosphere of 5% CO2 and 95% air. 2.0×105 cells were seeded in each well of 12-well tissue culture plates for overnight. Cells were treated with DMSO or test article (starting at 100 μM, 10-dose with 3 fold dilution) for 3 hours. The cells were washed once with ice cold PBS and lysed with 1× cell lysis buffer. Cell lysates were collected and samples were added to the appropriate wells of the ELISA plate. Plate was incubated for overnight at 4° C. 100 μL of reconstituted Phospho-S6 Ribosomal Protein (Ser235/236) Detection Antibody was added to each well and the plate was incubated at 37° C. for 1 hour. Wells were washed and 100 μl of reconstituted HRP-Linked secondary antibody was added to each well. The plate was incubated for 30 minutes at 37° C. Wash procedure was repeated and 100 μL of TMB Substrate was added to each well. The plate was incubated for 10 minutes at 37° C. 100 μL of STOP Solution was added to each well and the absorbance was read at 460 nm using Envision 2104 Multilabel Reader (PerkinElmer, Santa Clara, CA). IC50 curves were plotted and IC50 values were calculated using the GraphPad Prism 4 program based on a sigmoidal dose-response equation.
Unless otherwise noted, compounds that were tested had an IC50 of less than 50 μM in the S6K Binding assay. A=less than 0.05 μM; B=greater than 0.05 μM and less than 0.5 μM; C=greater than 0.5 μM and less than 10 μM;
Example 1
95 g of manganese (purity: 99.95%; purchased from Taewon Scientific Co., Ltd.) and 5 g of high-purity graphite (purity: 99.5%; purchased from Taewon Scientific Co., Ltd.) were placed in a water-cooled copper crucible of an argon plasma arc melting apparatus (manufactured by Labold AG, Germany, Model: vacuum arc melting furnace Model LK6/45), and melted at 2,000 K under an argon atmosphere. The melt was cooled to room temperature at a cooling rate of 104 K/min to obtain an alloy ingot. The alloy ingot was crushed to a particle size of 1 mm or less by hand grinding. Thereafter, the obtained powders were magnetically separated using a Nd-based magnet to remove impurities repeatedly, and the Mn4C magnetic powders were collected. The collected Mn4C magnetic powders were subjected to X-ray diffraction (XRD) analysis (measurement system: D/MAX-2500 V/PO, Rigaku; measurement condition: Cu—Kα ray) and energy-dispersive X-ray spectroscopy (EDS) using FE-SEM (Field Emission Scanning Electron Microscope, MIRA3 LM).
As can be seen in
The M-T curve of the field aligned Mn4C powder obtained in Example 1 was measured under an applied field of 4 T and at a temperature ranging from 50 K to 400 K. Meanwhile, the M-T curve of the randomly oriented Mn4C powder was measured under an applied field of 1 T. The Curie temperature of Mn4C was measured under 10 mT while decreasing temperature from 930 K at a rate of 20 K/min.
According to the Néel theory, the ferrimagnets that contain nonequivalent substructures of magnetic ions may have a number of unusual forms of M-T curves below the Curie temperature, depending on the distribution of magnetic ions between the substructures and on the relative value of the molecular field coefficients. The anomalous M-T curves of Mn4C, as shown in
According to one embodiment of the present disclosure, the saturation magnetization of Mn4C increases linearly with increasing temperature within the range of 50 K to 590 K and remains stable at temperatures below 50 K. The increases in anomalous magnetization of Mn4C with increasing temperature can be considered in terms of the Néel's P-type ferrimagnetism. At temperatures above 590 K, the Mn4C decomposes into Mn23C6 and Mn, which are partially oxidized into the manganosite when exposed to air. The remanent magnetization of Mn4C varies little with temperature. The Curie temperature of Mn4C is about 870 K. The positive temperature coefficient (about 0.0072 Am2/kgK) of magnetization in Mn4C is potentially important in controlling the thermodynamics of magnetization in magnetic materials.
The Curie temperature Te of Mn4C is measured to be about 870 K, as shown in
As shown in
The magnetic properties of Mn4C measured are different from the previous theoretical results. A corner MnI moment of 3.85μB antiparallel to three face-centered MnII moments of 1.23μB in Mn4C was expected at 77 K. The net moment per unit cell was estimated to be 0.16μB. In the above experiment, the net moment in pure Mn4C at 77 K is 0.26μB/unit cell, which is much larger than that expected by Takei et al. It was reported that the total magnetic moment of Mn4C was calculated to be about 1μB, which is almost four times larger than the 0.258μB per unit cell measured at 4.2 K, as shown in
The thermomagnetic behaviors of Mn4C are related to the variation in the lattice parameters of Mn4C with temperature. It is known that the distance of near-neighbor manganese atoms plays an important role in the antiferro- or ferro-magnetic configurations of Mn atoms. Ferromagnetic coupling of Mn atoms is possible only when the Mn—Mn distance is large enough.
Thus, it can be seen that the abnormal increase in magnetization of Mn4C with increasing temperature occurs due to the variation in the lattice parameters of Mn4C with temperature.
The powder produced in Example 1 was annealed in vacuum for 1 hour at each of 700 K and 923 K, and then subjected to X-ray spectroscopy, and the results thereof are shown in
The magnetization reduction of Mn4C at temperatures above 590 K is ascribed to the decomposition of Mn4C, which is proved by the XRD patterns of the powders after annealing Mn4C at elevated temperatures.
These results prove that the metastable Mn4C decomposes into stable Mn23C6 at temperatures above 590 K. The presence of Mn4C in the powder annealed at 923 K indicates a limited decomposition rate of Mn4C, from which the Tc of Mn4C can be measured. Both Mn23C6 and Mn are weak paramagnets at ambient temperature and elevated temperatures. Therefore, the magnetic transition of the Mn4C magnetic material at 870 K is ascribed to the Curie point of the ferrimagnetic Mn4C.
The Mn4C shows a constant magnetization of 0.258μB per unit cell below 50 K and a linear increment of magnetization with increasing temperature within the range of 50 K to 590 K, above which Mn23C6 precipitates from Mn4C. The anomalous M-T curves of Mn4C can be considered in terms of the Néel's P-type ferrimagnetism.
Example 250
The structure of the compound of Example 250 is depicted in FIG. 1.
The structure of the compound of Example 250 is depicted in FIG. 1.
(+)-Sodium L-ascorbate (4.7 mg, 0.02 mmol) was added to a solution of the foregoing compound (25 mg, 0.01 mmol), N-but-3-yn-1-yl-N2,N6-dipent-4-ynoyl-L-lysinamide (2.103 mg, 5.88 μmol) and CuSO4.5H2O (5.88 mg, 0.02 mmol) in t-BuOH (5 mL)/H2O (10 mL) under N2 atmosphere. The solution turned milky. After 4 hours the reaction was quenched with aqueous Na2CO3 (10%, 0.050 mL, 0.05 mmol) and filtered. The filtrate was lyophilized and the residue was purified by preparative RP-HPLC (Column: Waters XSelect CSH C18 ODB 5 μm 150×19 mm; mobile phase: A—H2O/TFA 100/0.15 and B—MeCN with a gradient 5% B for 0.5 min, 5-36% B in 1.5 min, 36-41% B in 14 min; flow 30 mL/min at rt, detection 230 nm) to give the title compound (6.8 mg, 9%). HRMS: calculated for (C305H432F3N81O72S9+4H)4+1682.5096; found (ESI [M+4H]4+) 1682.5154, purity 97%.
Top products related to «Atmosphere»
More about "Atmosphere"
This vital envelope of air extends from the surface to a height of approximately 10,000 kilometers.
The atmosphere is primarily composed of nitrogen, oxygen, carbon dioxide, and water vapor, and it plays a crucial role in the planet's weather patterns and climate.
The atmosphere protects life on Earth by absorbing ultraviolet solar radiation, warming the surface through heat retention (the greenhouse effect), and reducing temperature extremes between day and night.
It also plays a key role in the water cycle, allowing for the formation of clouds, precipitation, and other meteorological phenomena.
The composition and structure of the atmosphere can be further divided into distinct layers, including the troposphere, stratosphere, mesosphere, and thermosphere.
Each layer has unique characteristics and serves a specific function in maintaining the delicate balance of our planetary ecosystem.
Beyond Earth, many other planets and celestial bodies in our solar system also have their own unique atmospheres, which can vary greatly in composition and density.
Understanding the atmospheric properties of these extraterrestrial environments is crucial for the study of planetary science and the search for habitable worlds.
In the context of cell culture and biological research, terms like FBS (Fetal Bovine Serum), DMEM (Dulbecco's Modified Eagle Medium), Penicillin, Streptomycin, Penicillin/Streptomycin, RPMI 1640 medium, RPMI 1640, L-glutamine, and Lipofectamine 2000 are commonly used to describe the various components and media used to support the growth and maintenance of cells in laboratory settings.
These elements, while not directly related to the Earth's atmosphere, are important factors in the successful cultivation and experimentation of living organisms.