The largest database of trusted experimental protocols

Light

Light is a form of electromagnetic radiation that is visible to the human eye.
It is a crucial component of the electromagnetic spectrum, enabling vision and facilitating numerous biological processes.
Light can be emitted, reflected, or transmitted, and its properties, such as wavelength and frequency, determine its various applications in science, technology, and everyday life.
Understanding the nature and behavior of light is fundamental to fields like optics, photonics, and quantum mechanics.
Reserch on the properties and uses of light continues to drive innovation across numerous disciplines.

Most cited protocols related to «Light»

Here we present an R package named ‘UpSetR’ based on the ‘UpSet’ technique (Lex et al., 2014 (link); Lex and Gehlenborg, 2014 ) that employs a matrix-based layout to show intersections of sets and their sizes. It is implemented using ggplot2 (Wickham, 2009 ) and allows data analysts to easily generate generate UpSet plots for their own data. UpSetR support three input formats: (i) a table in which the rows represent elements and columns include set assignments and additional attributes; (ii) sets of elements names; and (iii) an expression describing the size of the set intersections as introduced by the venneuler package (Wilkinson, 2012 (link)). UpSetR provides support for the visualization of attributes associated with the elements contained in the sets, enabling researchers to explore and characterize the intersections. UpSetR differs from the original UpSet technique as it is optimized for static plots and for integration into typical bioinformatics workflows. We also provide a Shiny app that allows researchers to create publication-quality UpSet plots directly in a web browser.
UpSetR visualizes intersections of sets as a matrix in which the rows represent the sets and the columns represent their intersections (Fig. 1 and Supplementary Figs. S1 and S2 for comparisons of Venn and Euler diagrams with UpSetR plots). For each set that is part of a given intersection, a black filled circle is placed in the corresponding matrix cell. If a set is not part of the intersection, a light gray circle is shown. A vertical black line connects the topmost black circle with the bottommost black circle in each column to emphasize the column-based relationships. The size of the intersections is shown as a bar chart placed on top of the matrix so that each column lines up with exactly one bar. A second bar chart showing the size of the each set is shown to the left of the matrix.
Full text: Click here
Publication 2017
Cytosol Figs Intersectional Framework Light
The photoelectron momentum distributions with respect to the molecular axis shown in Fig. 2 were generated in the following way. Initially, the ions were assigned to the one of the two breakup channels, direct and indirect, by requiring the magnitude of the ion momentum to be within 3.5–17 a.u. and 37–46 a.u., respectively. This gating ensure that the ion comes from the breakup of the dimer along II(1/2)g state (Fig. 1a). The ionization of atomic neon as well as dissociation over the other potential curves43 (link) would result in the ion momentum smaller than 3 a.u. Subsequently, only ionization events have been considered, where ion and electron momentum vectors lie within slices along the polarization plane, defined by the conditions |px| < 0.55 a.u. for electrons as well as |px| < 3.5 a.u. and |px| < 12.0 a.u. for ions from the direct and indirect dissociation channels, respectively (the x-direction is the light propagation direction). These conditions ensure that the angle between a momentum vector and the polarization plane does not exceed 45° in the worst case. For the majority of events this angle is, however, smaller than 30°. Both, electron and ion momentum vectors were projected onto the polarization plane. The projection of the ion momentum defines the k|| direction, whereas the two components, k|| and k, of the electron projection are plotted in Fig. 2. This type of molecular frame transformation avoids nodes along the dimer axis. It does not conserve the product k·R, but the loss of contrast in the interference patterns is negligible. Another type of transformation, a natural one, where the ion momentum vector, not its projection, defines the k|| direction is presented in the Supplementary Note 3 and Supplementary Fig. 4.
Full text: Click here
Publication 2019
Cloning Vectors Electrons Epistropheus Light Neon Product R Reading Frames
The neon dimers were prepared in a molecular beam under supersonic expansion of gaseous neon at a temperature of 60 K through a 5 µm nozzle (see Supplementary Figure 1). The nozzle temperature was stabilized within ±0.1 K by a continuous flow cryogenic cryostat (Model RC110 UHV, Cryo Industries of America, Inc.). The optimum dimer yield was found at a nozzle back pressure of 3 bar. Neon dimers were selected from the molecular beam by means of matter wave diffraction using a transmission grating with a period of 100 nm. The selection allowed increasing the relative yield of Ne2 from typically 2%12 (link) to 20% with respect to the monomer.
The neon dimers were singly ionized by a strong ultra-short laser field (40 fs -FWHM in intensity -, 780 nm, 8 kHz, Dragon KMLabs). The field intensities were 7.3×1014 W cm−2 (Keldysh parameter γ = 0.72) in case of circular polarization and 1.2×1015 W cm−2 (γ = 0.4) in the experiment with linearly polarized light. The 3D-momenta of the ion and the electron after ionization were measured by cold target recoil ion momentum spectroscopy (COLTRIMS). In the COLTRIMS spectrometer a homogeneous electric field of 16 V cm−1 for circularly polarized light, or 23 V cm−1 in case of linearly polarized laser field, guided the ions onto a time- and position-sensitive micro-channel plate detector with hexagonal delay-line position readout42 (link) and an active area of 80 mm. In order to achieve 4π solid angle detection of electrons with momenta up to 2.5 a.u., a magnetic field of 12.5 G was applied within the COLTRIMS spectrometer in the experiment with the circularly polarized laser field. In the case of linearly polarized light a magnetic field of 9 G was utilized. The ion and electron detectors were placed at 450 mm and 250 mm, respectively, away from the ionization region.
Full text: Click here
Publication 2019
Cold Temperature Electricity Electrons Gases Light Magnetic Fields Neon Pressure Spectrum Analysis Transmission, Communicable Disease
C. crescentus, B. subtilis, A. biprosthecum, Rhodomicrobium sp, and P. hirshii were grown in PYE14 (link) at 30°C. A. tumefaciens, S. venezuelae, L. lactis, were grown in LB15 (link) at 30°C and E. coli was grown in LB15 (link) at 37°C. M. xanthus were grown at 32°C in CYE16 (link). S. pneumonia were grown at 37°C in THY17 . Rhodopseudomonas palustris CGA009 was grown anaerobically in defined mineral medium (PM)18 supplemented with 10 mM succinate and incubated at 30°C with constant illumination from a 60 W incandescent light bulb.
Phase and fluorescence time-lapse imaging was performed on a Nikon Ti-E inverted microscope, equipped with a Plan Apo 60×, 1.40 NA, Oil, Ph3 DM objective and 1.5× magnifier. Images were acquired every 5 min, and fluorescent proteins were illuminated with a Lumencor Spectra × light engine equipped with excitation filters 470/24 (GFP), 510/25 (YFP) or 575/25 (mCherry), Chroma emission filters 510/40 (GFP), 545/30 (YFP), 530/60 (mCherry) and either a quad polychroic DAPI/FITC/Cy3/Cy5 or triple polychroic CFP/YFP/mCherry cube for Lumencor SpectraX. Images were acquired using an Andor iXon3 DU885 EM CCD camera driven by NIS Elements Advanced Research software (Nikon, Melville, NY)
Cultures from strain YB4667 CB15::pvan-ftsZ-yfp were grown in PYE medium at 30°C and induced for 2 hours with 0.5 mM vanillic acid to express FtsZ-YFP. Exponentially growing cells from this culture were spotted onto a 0.8 mm thick 1% agarose pad made with PYE medium containing 0.5 mM vanillic acid and timelapse images were acquired every 5 minutes from 16 different slide positions for 54 time points. For cell division inhibition, 30 µg/ml of cephalexin was added to the agarose pad during the imaging period.
For precision assessment of MicrobeJ, Molecular Probes FluoSpheres carboxylate-modified microspheres (F8823), 1± 0.0480 µm lot #1761288 were spotted onto a 1% agarose pad made with deionized water and images were acquired for 30 ms using the same microscope, camera and objective as cells.
Publication 2016
Apolipoproteins A Cell Culture Techniques Cells Cephalexin DAPI Division, Cell Escherichia coli Fluorescein-5-isothiocyanate Fluorescence Incandescence Light Medulla Oblongata Microscopy Microspheres Minerals Molecular Probes Pneumonia Proteins Psychological Inhibition Rhodomicrobium Rhodopseudomonas palustris Sepharose Strains Succinate Vanillic Acid
In order to get a closer insight in the process of sequence annotation, 100 sequences from each of the ccl1, pfl and min datasets were manually reviewed by scientists actively working in the study of the different species. The curation process involved eight out of the 11 basic annotation styles (default style was only considered at Gow = 5, see Table 2) and proceeded through a direct revision of BLAST and annotation results. For each query sequence the following aspects were documented: number and taxa of different species spanned in the BLAST result (in a maximum of 20 BLAST hits), consistency of gene product descriptions through different hits, number and coherency of annotated GO terms on the light of current expert knowledge and/or available literature over the hit sequences, ratio between correct-declared and wrong/doubtful-declared annotations, GO term type and hit of origin in case of wrong-declared annotations and a global evaluation of the correctness of the annotation. As a working procedure, the described evaluation was applied to the Blast2GO default annotation style (default, Gow = 5) and the remaining seven annotation types were compared to the standard for their increase or decrease in annotation correctness and coverage.
Publication 2008
Light Proteins

Most recents protocols related to «Light»

Example 8

Human subcutaneous pre-adipocytes (Zenbio (RTP, NC, U.S.A.)) were received pre-plated in white-walled 96-well plates. A schematic description of the protocol used for examining the effects of Compound A on lipid accumulation in differentiating human adipocytes is shown in FIG. 9. Upon arrival of cells (Day 1) 150 μL media in the wells was replaced with adipocyte differentiation media (Zenbio (RTP, NC, U.S.A.)). The following day media was replaced as described for Day 1. Media was subsequently replaced as described every two to three days. On Day 6, 150 μL of the adipocyte differentiation media was replaced with vehicle (0.1% DMSO), or the SCD1 inhibitors at the concentrations indicated. After two days (Day 8) 150 μL media was replaced with 150 μL adipocyte maintenance media containing vehicle (0.1% DMSO) or the SCD1 inhibitors at the concentrations indicated as described above. Following a further four days of incubation (Day 12) cells were stained with AdipoRed™ (Lonza Bioscience (Walkersville, MD, U.S.A.)) according to the manufacturer's instructions. Cytotoxicity following incubation of adipocytes with Compound A was determined in separate wells, not used for Adipored™ staining, and was measured using CellTiter-Glo® (Promega (Madison, WI)) according to the manufacturer's instructions. Following a 10 min room temperature incubation the luminescence measured as relative light units (RLU) was determined in a luminescent plate reader. For adipocytes treated with concentrations of 1.2-100 nM Compound A for 6 days, cell viability as determined by RLU following CellTiter-Glo® remained greater than 75% of the value obtained with vehicle-treated adipocytes. The RLU dropped to 72% of vehicle in adipocytes treated with 1 μM Compound A (data not shown). These findings indicate that the decrease in lipid accumulation in the differentiating primary human adipocytes following Compound A treatment is not associated with cytotoxicity at least up to 100 nM Compound A.

Calculation of the IC50 for inhibition of triglyceride accumulation in human adipocytes was determined by non-linear regression analysis of the RFU, using a variable slope, 4-parameter fit (GraphPad PRISM®). FIG. 10 Shows the reduction in lipid accumulation following treatment of differentiating primary human adipocytes with 100 nM Compound A and analogs Compounds B, D, E, G and H for six days. FIG. 11 shows a representative study comparing the concentration-dependent reduction in lipid accumulation with Compounds A, G and H. Compound D was tested at 5 μM only. The relative IC50 values for Compound A, G and H in this study were 9.3 nM, 24.2 nM and 56 nM respectively.

Full text: Click here
Patent 2024
Adipocytes Cells Cell Survival Cytotoxin Homo sapiens inhibitors Light Lipids Luminescence prisma Promega Psychological Inhibition Sulfoxide, Dimethyl Triglycerides
Not available on PMC !

Example 26

[Figure (not displayed)]

Synthesis of 169-A.

A mixture of tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (750 mg, 3.54 mmol), 1-methylpiperidin-4-one (800 mg, 7.08 mmol) and acetic acid (2 drops) in DCE (15 mL) was stirred at 50° C. for 2 h. Then Sodium triacetoxyborohydride (1.50 g, 7.08 mmol) was added into above mixture and stirred at 50° C. for another 2 h. After the reaction was completed according to LCMS, the solvent was diluted with water (10 mL) and then extracted by DCM (10 mL×3). The combined organics washed with brine (10 mL×3), dried over anhydrous Na2SO4 and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜50:1) to give 169-A (750 mg, 69%) as a yellow oil.

Synthesis of 169-B.

A solution of 169-A (400 mg, 1.29 mmol) in DCM (10 mL) was added TFA (5 mL) and stirred at room temperature for 1 h. when LCMS showed the reaction was finished. The solvent was removed in vacuo to give 169-B as a crude product and used to next step directly.

Synthesis of 169-C.

A mixture of 143-C (306 mg, 0.65 mmol) and 169-B (crude product from last step) in acetonitrile (6 mL) was stirred at 50° C. for 30 min. Then Na2CO3 (624 mg, 6.50 mmol) was added into above mixture and stirred at 50° C. for 3 h. After the reaction was completed according to LCMS, the mixture was cooled to room temperature. The Na2CO3 was removed by filtered. The filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜20:1) to give 169-C (230 mg, 76%) as a yellow solid.

Synthesis of 169.

A mixture of 169-C (230 mg, 0.49 mmol) and Pd/C (230 mg) in MeOH (10 mL) was stirred at room temperature for 30 min under H2 atmosphere. Pd/C was then removed by filtration through the Celite. The filtrate was concentrated and the residue was purified by Pre-TLC (DCM:MeOH=10:1) to give 169 (150 mg, 70%) as a white solid.

Compounds 152, 182, 199, 201, 202, 203, 235, 236 and 256 were synthesized in a similar manner using the appropriately substituted aldehyde or ketone variant of 169.

Compound 152.

50 mg, 36%, a light yellow solid.

Compound 182.

70 mg, 38%, a red solid.

Compound 199.

50 mg, 54%, a light yellow solid.

Compound 201.

30 mg, 42%, as a yellow solid.

Compound 202.

30 mg, 42%, a yellow solid.

Compound 203.

30 mg, 18%, a yellow solid.

Compound 235.

170 mg, 87%, a white solid.

Compound 236.

70 mg, 50%, a white solid.

Compound 256.

20 mg, 8%, a light yellow solid.

Compounds 210, 211, 215, 222, 223, 242 and 262 were synthesized in a similar manner using the appropriately substituted amine variant of 169.

Compound 210.

160 mg, 96%, a tan solid.

Compound 211.

70 mg, 40%, a white solid

Compound 215.

70 mg, 75%, a white solid.

Compound 222.

30 mg, 42%, a yellow solid.

Compound 223.

35 mg, 31%, a white solid.

Compound 242.

50 mg, 34%, a white solid.

Compound 262.

38 mg, 43%, a white solid.

Full text: Click here
Patent 2024
Acetic Acid acetonitrile Aldehydes Amines Anabolism Atmosphere brine Celite Chromatography compound 26 compound 235 Filtration Ketones Light Lincomycin Pyrrole Silica Gel Sodium Solvents TERT protein, human

Example 3

To evaluate the crystal morphology of the example iPP/CNF composites, a ME520 Series polarized light microscope (PLM) (AmScope, USA) was utilized. Sections that were 3 μm-thick were obtained from cross sections of injection molded specimens using a Sorvall MT2-B Ultramicrotome. Each section was placed between a glass slide and a cover slip then transferred to a hot plate (Thermo Scientific) at 200° C. for 2 min before it was cooled at room temperature.

FIG. 5 shows the crystal morphology of iPP and iPP/CNF composites obtained by a polarized light microscope. Because no cold-crystallization peaks were observed in the DSC scans for all specimens, the crystal morphology caused by the micrograph preparation was negligible. As the CNF content was increased in the iPP matrix, the nucleation density increased, but spherulite size decreased. Typical crystal diameters of iPP, iPP/MA, and the iPP/CNF3%, iPP/CNF10%, iPP/CNF30% and iPP/MA/CNF10% composites were about 33 μm, 27 μm, 21 μm, 12 μm, 8 μm, and 10 μm, respectively. These results suggested that CNF restricted the folding motion of polymer chains during crystallization and made the re-entry of polymer chains into the crystal face more difficult, resulting in smaller crystals. Hence, steric hindrance attributed to a large concentration of CNF resulted in the high values of ΔE for iPP, as shown in Table 5. Meanwhile, MAPP allowed the PP to mix more effectively with CNF. MAPP may also have facilitated transcrystallization, a process in which spherulites grow perpendicularly to a surface. Transcrystallization can improve the attachment of polymer segments to the crystal surface and reduce ΔE. However, the method used in this example to prepare sections for PLM observation involved fairly rapid cooling (˜80° C./min), which may have created thin transcrystalline layers. Thin crystal layers are not readily seen in PLM at high magnification because of their weak light intensity. A possible site of CNF transcrystallization was identified in the iPP/MA/CNF10% composite shown in FIG. 5. As a comparison, the morphology of the PP spherulites on the CNF surfaces in the PP/CNF3% composite is also shown and was almost identical to that of the iPP matrix. These results suggest that MAPP caused a transcrystalline layer formation. The PLM micrographs also confirmed kinetic results obtain in previous sections.

The overall crystallization rate may be dependent on nucleation rate and crystal growth rate. For iPP/CNF3%, the presence of CNF increased the nucleation density without affecting the crystal growth. Therefore, iPP/CNF3% had an accelerated crystallization rate. For iPP/CNF10%, the nucleation density pf iPP was increased by the CNF. At the same time, crystal growth was impeded by CNF. Overall, CNF reduced iPP's crystallization rate when present at 10 wt. %. After MAPP was introduced to iPP/CNF10%, the nucleation density of the composite furthered increased because of a coupling effect. Moreover, the formation of transcrystalline layers facilitated crystal growth.

Full text: Click here
Patent 2024
Cold Temperature Crystal Growth Crystallization Debility Face Kinetics Light Microscopy Microscopy, Polarization Polymers Radionuclide Imaging Ultramicrotomy Vision
Not available on PMC !

Example 19

TABLE 37
Embodiments of lyophilized silk powders
Silk SolutionTreatmentSoluble
~60 kDa silk, 6% silk, pH = 7-8lyopholize and cut withno
blender
~60 kDa silk, 6% silk, pH = 10lyopholize and cut withno
blender
~25 kDa silk, 6% silk, pH = 7-8lyopholize and cut withyes
blender
~25 kDa silk, 6% silk, pH = 10lyopholize and cut withyes
blender

The above silk solutions were transformed to a silk powder through lyophilization to remove bulk water and chopping to small pieces with a blender. pH was adjusted with sodium hydroxide. Low molecular weight silk (−25 kDa) was soluble while high molecular weight silk (−60 kDa) was not.

The lyophilized silk powder can be advantageous for enhanced storage control ranging from 10 days to 10 years depending on storage and shipment conditions. The lyophilized silk powder can also be used as a raw ingredient in the pharmaceutical, medical, consumer, and electronic markets. Additionally, lyophilized silk powder can be re-suspended in water, HFIP, or an organic solution following storage to create silk solutions of varying concentrations, including higher concentration solutions than those produced initially.

In an embodiment, aqueous pure silk fibroin-based protein fragment solutions of the present disclosure comprising 1%, 3%, and 5% silk by weight were each dispensed into a 1.8 L Lyoguard trays, respectively. All 3 trays were placed in a 12 ft2 lyophilizer and a single run performed. The product was frozen with a shelf temperature of ≤−40° C. and held for 2 hours. The compositions were then lyophilized at a shelf temperature of −20° C., with a 3 hour ramp and held for 20 hours, and subsequently dried at a temperature of 30° C., with a 5 hour ramp and held for about 34 hours. Trays were removed and stored at ambient conditions until further processing. Each of the resultant lyophilized silk fragment compositions were able to dissolve in aqueous solvent and organic solvent to reconstitute silk fragment solutions between 0.1 wt % and 8 wt %. Heating and mixing were not required but were used to accelerate the dissolving rate. All solutions were shelf-stable at ambient conditions.

In an embodiment, an aqueous pure silk fibroin-based protein fragment solution of the present disclosure, fabricated using a method of the present disclosure with a 30 minute boil, has a molecular weight of about 57 kDa, a polydispersity of about 1.6, inorganic and organic residuals of less than 500 ppm, and a light amber color.

In an embodiment, an aqueous pure silk fibroin-based protein fragment solution of the present disclosure, fabricated using a method of the present disclosure with a 60 minute boil, has a molecular weight of about 25 kDa, a polydispersity of about 2.4, inorganic and organic residuals of less than 500 ppm, and a light amber color.

Full text: Click here
Patent 2024
Amber ARID1A protein, human Dietary Fiber Fibroins Freeze Drying Freezing Furuncles Light Pharmaceutical Preparations Powder Proteins Silk Sodium Hydroxide Solvents
Not available on PMC !

Example 1

A renewable paraffinic product was produced by heavily cracking hydrodeoxygenation and isomerisation of feedstock mixture of vegetable and animal fat origin. This product was analysed using various analysis methods (Table 2).

TABLE 2
Analysed renewable paraffinic product.
AnalysisMethodUnitValue
Freezing pointIP529° C. −42.0
DensityASTM kg/m3753.0
D4052
Weighted average NM49012.0
carbon number
% carbon number 14-17NM490wt-%30.5
T10 (° C.) cut-off temperatureASTM D86° C. 168.5
T90 (° C.) cut-off temperatureASTM D86° C. 245.5
Final boiling pointASTM D86° C. 256.0

The analysed product in Table 2 fulfils the freezing point of jet fuel specification, but the freezing point is not exceptionally low.

Example 4

Another renewable paraffinic product produced by hydrodeoxygenation and isomerisation of another feedstock mixture of vegetable and animal fat origin is further directed to a fractionation unit. In the fractionation unit, the renewable paraffinic product is divided into two fractions. Lighter of the fractions containing 80 wt-% of the original renewable paraffinic product is re-analysed using various analysis methods (Table 5).

TABLE 5
Analysed renewable paraffinic product.
AnalysisMethodUnitValue
Freezing pointIP529° C.−50.9
DensityASTM kg/m3770.1
D4052
Weighted average NM49014.7
carbon number
% carbon number 14-17NM490wt-%73.6
T10 (° C.) cut-off temperatureASTM D86° C.191.9
T90 (° C.) cut-off temperatureASTM D86° C.276.6
Final boiling pointASTM D86° C.283.1

This product also fulfils all requirements of a high-quality renewable aviation fuels. From the analysis results it can be seen that despite the fact that the density of the paraffinic composition is over 768 kg/m3 (measured 770.1 kg/m3) the freezing point (measured −50.9° C.) is significantly lower than the freezing point of the product of comparative example 1.

It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.

Full text: Click here
Patent 2024
Animals Carbon-14 Carbon-17 Fractionation, Chemical Hydrocarbons jet fuel A Light Paraffin Vegetables Vision

Top products related to «Light»

Sourced in Switzerland, Germany, United States, China, Japan, United Kingdom, France, Belgium, Canada, Australia, Sweden, Austria, Denmark, Italy, Norway, Estonia, Spain, Morocco, New Zealand, Netherlands, Czechia
The LightCycler 480 is a real-time PCR instrument designed for quantitative nucleic acid analysis. It features a 96-well format and uses high-performance optics and detection technology to provide accurate and reliable results. The core function of the LightCycler 480 is to facilitate real-time PCR experiments through thermal cycling, fluorescence detection, and data analysis.
Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in United States, Montenegro, Japan, Canada, United Kingdom, Germany, Macao, Switzerland, China
C57BL/6J mice are a widely used inbred mouse strain. They are a commonly used model organism in biomedical research.
Sourced in United States, China, Germany, Canada, United Kingdom, Japan, France, Italy, Morocco, Hungary, New Caledonia, Montenegro, India
Sprague-Dawley rats are an outbred albino rat strain commonly used in laboratory research. They are characterized by their calm temperament and reliable reproductive performance.
Sourced in United States, United Kingdom, Germany, Canada, Japan, Sweden, Austria, Morocco, Switzerland, Australia, Belgium, Italy, Netherlands, China, France, Denmark, Norway, Hungary, Malaysia, Israel, Finland, Spain
MATLAB is a high-performance programming language and numerical computing environment used for scientific and engineering calculations, data analysis, and visualization. It provides a comprehensive set of tools for solving complex mathematical and computational problems.
Sourced in United Kingdom, Germany, United States, France, Japan, China, Netherlands, Morocco, Spain, Cameroon
The Zetasizer Nano ZS is a dynamic light scattering (DLS) instrument designed to measure the size and zeta potential of particles and molecules in a sample. The instrument uses laser light to measure the Brownian motion of the particles, which is then used to calculate their size and zeta potential.
Sourced in United States, Germany, China, Japan, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Belgium, Denmark, Netherlands, India, Ireland, Lithuania, Singapore, Sweden, Norway, Austria, Brazil, Argentina, Hungary, Sao Tome and Principe, New Zealand, Hong Kong, Cameroon, Philippines
TRIzol is a monophasic solution of phenol and guanidine isothiocyanate that is used for the isolation of total RNA from various biological samples. It is a reagent designed to facilitate the disruption of cells and the subsequent isolation of RNA.
Sourced in Switzerland, Germany, United States, China, Japan, United Kingdom, France, Czechia, Canada, Sweden, Belgium, Poland, Portugal, Spain, Netherlands, Denmark
The LightCycler 480 II is a real-time PCR instrument designed for high-throughput nucleic acid quantification and analysis. It features a 96-well format and supports a wide range of applications, including gene expression analysis, genotyping, and DNA methylation studies.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in United States, Germany, United Kingdom, China, Canada, Japan, Italy, France, Belgium, Switzerland, Singapore, Uruguay, Australia, Spain, Poland, India, Austria, Denmark, Netherlands, Jersey, Finland, Sweden
The FACSCalibur is a flow cytometry system designed for multi-parameter analysis of cells and other particles. It features a blue (488 nm) and a red (635 nm) laser for excitation of fluorescent dyes. The instrument is capable of detecting forward scatter, side scatter, and up to four fluorescent parameters simultaneously.

More about "Light"

Electromagnetic radiation, optics, photonics, quantum mechanics, LightCycler 480, TRIzol reagent, C57BL/6J mice, Sprague-Dawley rats, MATLAB, Zetasizer Nano ZS, RNeasy Mini Kit, FACSCalibur.
Light is a fundamental component of the electromagnetic spectrum, enabling vision and driving numerous biological processes.
It can be emitted, reflected, or transmitted, with properties like wavelength and frequency determining its diverse applications.
Understanding light's nature and behavior is crucial for fields like optics, photonics, and quantum mechanics.
Researchers continue to explore light's properties and uses, driving innovation across disciplines.
Techniques like LightCycler 480 and TRIzol reagent leverage light-based methods for molecular analysis, while tools like MATLAB, Zetasizer Nano ZS, and FACSCalibur utilize light-based measurements.
Whether in scientific research or everyday life, light remains a pivital and versatile form of energy.