UpSetR visualizes intersections of sets as a matrix in which the rows represent the sets and the columns represent their intersections (
Light
It is a crucial component of the electromagnetic spectrum, enabling vision and facilitating numerous biological processes.
Light can be emitted, reflected, or transmitted, and its properties, such as wavelength and frequency, determine its various applications in science, technology, and everyday life.
Understanding the nature and behavior of light is fundamental to fields like optics, photonics, and quantum mechanics.
Reserch on the properties and uses of light continues to drive innovation across numerous disciplines.
Most cited protocols related to «Light»
UpSetR visualizes intersections of sets as a matrix in which the rows represent the sets and the columns represent their intersections (
The neon dimers were singly ionized by a strong ultra-short laser field (40 fs -FWHM in intensity -, 780 nm, 8 kHz, Dragon KMLabs). The field intensities were 7.3×1014 W cm−2 (Keldysh parameter γ = 0.72) in case of circular polarization and 1.2×1015 W cm−2 (γ = 0.4) in the experiment with linearly polarized light. The 3D-momenta of the ion and the electron after ionization were measured by cold target recoil ion momentum spectroscopy (COLTRIMS). In the COLTRIMS spectrometer a homogeneous electric field of 16 V cm−1 for circularly polarized light, or 23 V cm−1 in case of linearly polarized laser field, guided the ions onto a time- and position-sensitive micro-channel plate detector with hexagonal delay-line position readout42 (link) and an active area of 80 mm. In order to achieve 4π solid angle detection of electrons with momenta up to 2.5 a.u., a magnetic field of 12.5 G was applied within the COLTRIMS spectrometer in the experiment with the circularly polarized laser field. In the case of linearly polarized light a magnetic field of 9 G was utilized. The ion and electron detectors were placed at 450 mm and 250 mm, respectively, away from the ionization region.
Most recents protocols related to «Light»
Example 8
Human subcutaneous pre-adipocytes (Zenbio (RTP, NC, U.S.A.)) were received pre-plated in white-walled 96-well plates. A schematic description of the protocol used for examining the effects of Compound A on lipid accumulation in differentiating human adipocytes is shown in
Calculation of the IC50 for inhibition of triglyceride accumulation in human adipocytes was determined by non-linear regression analysis of the RFU, using a variable slope, 4-parameter fit (GraphPad PRISM®).
Example 26
Synthesis of 169-A.
A mixture of tert-butyl hexahydropyrrolo[3,4-c]pyrrole-2(1H)-carboxylate (750 mg, 3.54 mmol), 1-methylpiperidin-4-one (800 mg, 7.08 mmol) and acetic acid (2 drops) in DCE (15 mL) was stirred at 50° C. for 2 h. Then Sodium triacetoxyborohydride (1.50 g, 7.08 mmol) was added into above mixture and stirred at 50° C. for another 2 h. After the reaction was completed according to LCMS, the solvent was diluted with water (10 mL) and then extracted by DCM (10 mL×3). The combined organics washed with brine (10 mL×3), dried over anhydrous Na2SO4 and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜50:1) to give 169-A (750 mg, 69%) as a yellow oil.
Synthesis of 169-B.
A solution of 169-A (400 mg, 1.29 mmol) in DCM (10 mL) was added TFA (5 mL) and stirred at room temperature for 1 h. when LCMS showed the reaction was finished. The solvent was removed in vacuo to give 169-B as a crude product and used to next step directly.
Synthesis of 169-C.
A mixture of 143-C (306 mg, 0.65 mmol) and 169-B (crude product from last step) in acetonitrile (6 mL) was stirred at 50° C. for 30 min. Then Na2CO3 (624 mg, 6.50 mmol) was added into above mixture and stirred at 50° C. for 3 h. After the reaction was completed according to LCMS, the mixture was cooled to room temperature. The Na2CO3 was removed by filtered. The filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (DCM:MeOH=100:1˜20:1) to give 169-C (230 mg, 76%) as a yellow solid.
Synthesis of 169.
A mixture of 169-C (230 mg, 0.49 mmol) and Pd/C (230 mg) in MeOH (10 mL) was stirred at room temperature for 30 min under H2 atmosphere. Pd/C was then removed by filtration through the Celite. The filtrate was concentrated and the residue was purified by Pre-TLC (DCM:MeOH=10:1) to give 169 (150 mg, 70%) as a white solid.
Compounds 152, 182, 199, 201, 202, 203, 235, 236 and 256 were synthesized in a similar manner using the appropriately substituted aldehyde or ketone variant of 169.
Compound 152.
50 mg, 36%, a light yellow solid.
Compound 182.
70 mg, 38%, a red solid.
Compound 199.
50 mg, 54%, a light yellow solid.
Compound 201.
30 mg, 42%, as a yellow solid.
Compound 202.
30 mg, 42%, a yellow solid.
Compound 203.
30 mg, 18%, a yellow solid.
Compound 235.
170 mg, 87%, a white solid.
Compound 236.
70 mg, 50%, a white solid.
Compound 256.
20 mg, 8%, a light yellow solid.
Compounds 210, 211, 215, 222, 223, 242 and 262 were synthesized in a similar manner using the appropriately substituted amine variant of 169.
Compound 210.
160 mg, 96%, a tan solid.
Compound 211.
70 mg, 40%, a white solid
Compound 215.
70 mg, 75%, a white solid.
Compound 222.
30 mg, 42%, a yellow solid.
Compound 223.
35 mg, 31%, a white solid.
Compound 242.
50 mg, 34%, a white solid.
Compound 262.
38 mg, 43%, a white solid.
Example 3
To evaluate the crystal morphology of the example iPP/CNF composites, a ME520 Series polarized light microscope (PLM) (AmScope, USA) was utilized. Sections that were 3 μm-thick were obtained from cross sections of injection molded specimens using a Sorvall MT2-B Ultramicrotome. Each section was placed between a glass slide and a cover slip then transferred to a hot plate (Thermo Scientific) at 200° C. for 2 min before it was cooled at room temperature.
The overall crystallization rate may be dependent on nucleation rate and crystal growth rate. For iPP/CNF3%, the presence of CNF increased the nucleation density without affecting the crystal growth. Therefore, iPP/CNF3% had an accelerated crystallization rate. For iPP/CNF10%, the nucleation density pf iPP was increased by the CNF. At the same time, crystal growth was impeded by CNF. Overall, CNF reduced iPP's crystallization rate when present at 10 wt. %. After MAPP was introduced to iPP/CNF10%, the nucleation density of the composite furthered increased because of a coupling effect. Moreover, the formation of transcrystalline layers facilitated crystal growth.
Example 19
The above silk solutions were transformed to a silk powder through lyophilization to remove bulk water and chopping to small pieces with a blender. pH was adjusted with sodium hydroxide. Low molecular weight silk (−25 kDa) was soluble while high molecular weight silk (−60 kDa) was not.
The lyophilized silk powder can be advantageous for enhanced storage control ranging from 10 days to 10 years depending on storage and shipment conditions. The lyophilized silk powder can also be used as a raw ingredient in the pharmaceutical, medical, consumer, and electronic markets. Additionally, lyophilized silk powder can be re-suspended in water, HFIP, or an organic solution following storage to create silk solutions of varying concentrations, including higher concentration solutions than those produced initially.
In an embodiment, aqueous pure silk fibroin-based protein fragment solutions of the present disclosure comprising 1%, 3%, and 5% silk by weight were each dispensed into a 1.8 L Lyoguard trays, respectively. All 3 trays were placed in a 12 ft2 lyophilizer and a single run performed. The product was frozen with a shelf temperature of ≤−40° C. and held for 2 hours. The compositions were then lyophilized at a shelf temperature of −20° C., with a 3 hour ramp and held for 20 hours, and subsequently dried at a temperature of 30° C., with a 5 hour ramp and held for about 34 hours. Trays were removed and stored at ambient conditions until further processing. Each of the resultant lyophilized silk fragment compositions were able to dissolve in aqueous solvent and organic solvent to reconstitute silk fragment solutions between 0.1 wt % and 8 wt %. Heating and mixing were not required but were used to accelerate the dissolving rate. All solutions were shelf-stable at ambient conditions.
In an embodiment, an aqueous pure silk fibroin-based protein fragment solution of the present disclosure, fabricated using a method of the present disclosure with a 30 minute boil, has a molecular weight of about 57 kDa, a polydispersity of about 1.6, inorganic and organic residuals of less than 500 ppm, and a light amber color.
In an embodiment, an aqueous pure silk fibroin-based protein fragment solution of the present disclosure, fabricated using a method of the present disclosure with a 60 minute boil, has a molecular weight of about 25 kDa, a polydispersity of about 2.4, inorganic and organic residuals of less than 500 ppm, and a light amber color.
Example 1
A renewable paraffinic product was produced by heavily cracking hydrodeoxygenation and isomerisation of feedstock mixture of vegetable and animal fat origin. This product was analysed using various analysis methods (Table 2).
The analysed product in Table 2 fulfils the freezing point of jet fuel specification, but the freezing point is not exceptionally low.
Example 4
Another renewable paraffinic product produced by hydrodeoxygenation and isomerisation of another feedstock mixture of vegetable and animal fat origin is further directed to a fractionation unit. In the fractionation unit, the renewable paraffinic product is divided into two fractions. Lighter of the fractions containing 80 wt-% of the original renewable paraffinic product is re-analysed using various analysis methods (Table 5).
This product also fulfils all requirements of a high-quality renewable aviation fuels. From the analysis results it can be seen that despite the fact that the density of the paraffinic composition is over 768 kg/m3 (measured 770.1 kg/m3) the freezing point (measured −50.9° C.) is significantly lower than the freezing point of the product of comparative example 1.
It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.
Top products related to «Light»
More about "Light"
Light is a fundamental component of the electromagnetic spectrum, enabling vision and driving numerous biological processes.
It can be emitted, reflected, or transmitted, with properties like wavelength and frequency determining its diverse applications.
Understanding light's nature and behavior is crucial for fields like optics, photonics, and quantum mechanics.
Researchers continue to explore light's properties and uses, driving innovation across disciplines.
Techniques like LightCycler 480 and TRIzol reagent leverage light-based methods for molecular analysis, while tools like MATLAB, Zetasizer Nano ZS, and FACSCalibur utilize light-based measurements.
Whether in scientific research or everyday life, light remains a pivital and versatile form of energy.