The largest database of trusted experimental protocols

Light, Visible

Light, Visible refers to the portion of the electromagnetic spectrum that is visible to the human eye, typically ranging from approximately 380 to 740 nanometers in wavelength.
This type of light is essential for various biological and technological processes, including photosynthesis, vision, and illumination.
Researchers can optimize their light, visible research protocols using PubCompare.ai, an AI-driven platform that helps locate the best protocols from literature, pre-prints, and patents through intelligent comparisons.
The platform enhances reproducibility and accuarcy with its powerful tools, enabling researchers to experince the future of research optimization today.

Most cited protocols related to «Light, Visible»

Exposure to vegetation around each participant’s home address was estimated using a satellite image–based vegetation index. Chlorophyll in plants absorbs visible light (0.4–0.7 μm) for use in photosynthesis, whereas leaves reflect near-infrared light (0.7–1.1 μm). The Normalized Difference Vegetation Index (NDVI) calculates the ratio of the difference between the near-infrared region and red reflectance to the sum of these two measures and ranges from –1.0 to 1.0, with larger values indicating higher levels of vegetative density (Kriegler et al. 1969 ). For this study, we used data from the Moderate-resolution Imaging Spectroradiometer (MODIS) from NASA’s Terra satellite. MODIS provides images every 16 days at a 250-m resolution (Carroll et al. 2004 ).
We used geographic information systems (GIS) software from ArcMap (ESRI, Redlands, CA) to estimate the mean NDVI value inside radii of 250- and 1,250-m buffers around each participant’s home. We chose the 250-m radius as a measure of greenness directly accessible outside each home and the 1,250-m radius as a measure of greenness within a 10- to 15-min walk based on prior work within the Nurses’ Health Study cohorts on neighborhood environments and health behaviors (James et al. 2014 (link)). We created a seasonally time-varying measure based on the NDVI for a representative month in each season (January, April, July, and October) (Figure 1B–D). Two exposure metrics were calculated for each radius: contemporaneous NDVI (the greenness value for the current season), to reflect short-term exposure to greenness, and cumulative average NDVI (updated based on changes in seasonal NDVI as well as on changes in address), to reflect long-term exposure to greenness. For both exposure metrics, exposures were updated as NDVI changed over time as well as when participants moved to new residential addresses (updated based on the receipt of a biennial questionnaire with a new residential address).
Publication 2016
Buffers Chlorophyll Infrared Rays Light, Visible Nurses Photosynthesis Plants Radius
Three to 5 months old Long-Evans female rats were trained sequentially to forage and hunt virtual elements of a projected display in exchange for water rewards. The behavioral paradigm consists of a custom built arena made of structural framing components (Bosch Rexroth, DE). The floor of the arena is a rear-projection screen made out of a frosted acrylic panel. In order to compensate for the short-throw distance, the projected image is reflected off a mirror positioned below the arena floor. Video was recorded using a high-speed monochrome video camera (Flea3, Point Gray, CA) equipped with a visible light cutoff filter (R72, Hoya, JP) and analyzed in real-time using Bonsai. Infrared LED strips were positioned at the bottom of the arena in order to illuminate the floor through the diffuser, allowing for the tracking of the animal without contamination from the visual stimulus. Animals were first conditioned to a tone as a secondary reinforcer and then subsequently trained to either touch the light presented at random locations (foraging) or pursue a moving spot (hunting). Performance, monitoring and control of the behavior box was done using an Arduino board (Micro, Arduino, IT) and a Bonsai reactive state machine.
Publication 2015
Animals Behavior Control Light Light, Visible Rats, Long-Evans Reading Frames Touch Woman
Animals were treated according to guidelines approved by the French ethical committee. Neonate to four days old pups (P0-P4; CD1 strain, Charles-River, Lyon, France) were anesthetised by hypothermia (4 min) and fixed to a support using band-aid. The skin and the skull overlying the lateral ventricle were opened over about 2 mm using an ophthalmic scalpel. As a general positional marker, a virtual line connecting the right eye with lambda (visualized by a strong cold light source) was used and the incision was positioned 1 mm caudal to the midpoint of this line (Fig. 1a). Subsequently, the animal was placed in a stereotaxic rig (Kopff, Germany) under a Hamilton syringe connected to a pulled out glass capillary (diameter 200 µm, GC100-15, Clark, UK) containing 2 µl of plasmid solution (5 µg/µl, in PBS containing 1% Fast Green). The syringe was placed over the incision, positioned at the level of the skull, then lowered between 2.5 mm (P0) to 3.5 mm (P4) into the lumen of the right LV and the stained DNA solution was injected. An injection was considered correct when the shape of the now slightly dark stained lateral ventricle was visible under the light source. Only successfully injected animals were subjected to five electrical pulses (50 ms, separated by 950 ms intervals) using the CUY21 edit device (Nepagene, Chiba, Japan) and 10 mm tweezer electrodes (CUY650P10, Nepagene) coated with conductive gel (Control Graphique Medical, France). Electroporated animals were reanimated for several minutes on a 37°C heating plate before being returned to the mother.
Publication 2008
Animals Capillaries Common Cold Cranium Electric Conductivity Electricity Fast Green Infant, Newborn Light Light, Visible Medical Devices Mothers Plasmids Pulses Rivers Skin Strains Syringes Ventricle, Lateral
To test the shear bond strength (SBS) of the experimental composites to dentin through an adhesive system, the occlusal surfaces of extracted, caries-free, human molars were removed and their roots embedded in polycarbonate holders with chemical curing poly(methyl methacrylate) tray resin (Bosworth Fastray Powder and Liquid, Bosworth Company, Skokie, IL, USA). The exposed dentin surfaces were ground flat perpendicular to the longitudinal axis of the teeth with 320 grit silicon carbide paper (Fig. 1a). The bonding protocol included the following steps. Ground dentin surfaces were first dried, then etched for 15 s with phosphoric acid gel (mass fraction H3PO4 38 %; Etch-Rite®, Pulpdent Corporation, Watertown, MA, USA). The acid was rinsed away with distilled water for 10 s, and a moistened paper towel (Kimwipes®; Kimberly-Clark Global Sales, Inc., Roswell, GA, USA) was used to blot the surface to a near-dry condition. Two protocols were used to prime the moist dentin surfaces. In the ACP base-lining composite series, dentin surfaces were sequentially primed first with N-phenylglycine (NPG; mass fraction 5 %) solution in acetone for 30 s, and then with five consecutive coats of pyromellitic glycerol dimethacrylate (PMGDMA; mass fraction 20 %) in acetone solution and camphorquinone (CQ; mass fraction 0.028 %) as photo-activator. In the ACP orthodontic composite series, only one coating of PMGDMA-acetone primer (DenTASTIC UNO, Pulpdent Corporation, Watertown, MA, USA) was applied. Following the application of NPG and PMGDMA, or PMGDMA alone, the surfaces were air-dried for 10 s to remove acetone and visible-light cured for 10 s (Spectrum Curing Light, Dentsply Caulk Limited, Milford, DE USA). A poly(tetrafluoroethylene) (PTFE)-coated iris (4 mm in diameter and 1.5 mm thick) that defined the bonding area was positioned on the tooth surface, filled by the experimental composite and light-cured for 20 s for the experimental base-liner composites and 60 s for the orthodontic composites. ACP base-liner specimens were completed by applying a commercial resin-based composite (TPH, Dentsply Caulk, Milford, DE, USA), which was cured for an additional 60 s. The assemblies were then exposed to air for 5 min to allow further dry-curing at room temperature, after which they were immersed at 37 °C in either distilled water (ACP base-liner series) or a saliva-like solution [10 ] (orthodontic ACP series) for up to 6 months.
Publication 2009
Acetone Acids camphorquinone Composite Resins Dental Caries Dental Cavity Liner Dentastic Dentin Dentsply Epistropheus Fastray Glycerin Homo sapiens Iris Light Light, Visible Molar Oligonucleotide Primers phosphoric acid Plant Roots Poly A polycarbonate Polymethyl Methacrylate Polytetrafluoroethylene Powder Pulpdent Resins, Plant Saliva Shear Strength tetrafluoroethylene Tooth
Forty-eight hours after training, mice were placed in the original conditioning chambers, modified along a number of dimensions. The modified context contained a smooth white acrylic insert (ENV-005-GFCW) instead of the grid floor, and had a black plastic triangular tent (ENV-008-IRT translucent to only NIR light, placed inside the chamber. Mice, therefore, perceived their experience in the new context as being in near total darkness, while the camera, which has a visible light filter, saw little difference in lighting from one context to another. The chamber, from the camera's view, can be seen in Figure 1B. Please note, however, that to the unassisted human or mouse eye, the tent appears black, and the chamber is in near total darkness. A 7% white vinegar solution replaced the alcohol solution for cleaning and scenting to provide a novel odor. The mice remained in this new context for a total of 5 min, consisting of a 2-min baseline period, followed by a 3-min presentation of the tone.
Publication 2009
Darkness Ethanol Homo sapiens Light Light, Visible Mice, House Odors Vinegar Vision

Most recents protocols related to «Light, Visible»

Example 18

Evaluation on Basic Properties of Compound (1-1-1)

[Absorption Properties]

An absorption spectrum was measured by preparing a 2.0×10−5 mol/L toluene solution of a compound (1-1-1) and measuring the absorption spectrum of the solution. As a result, the maximum absorption wavelength in a visible light region was 477 nm (FIG. 3).

[Light Emission Properties]

The fluorescence spectrum was measured by preparing a 2.0×10−5 mol/L toluene solution of a compound (1-1-1), which was used in the absorption spectrum, exciting the solution at an excitation wavelength of 365 nm at room temperature, and observing a fluorescence spectrum thereof. As a result, the maximum light emission wavelength was 483 nm, and the half width was 13 nm (FIG. 4). The fluorescence quantum yield in this example was 100%. Furthermore, the lifetime of a delayed fluorescence component was measured using a fluorescence lifetime measurement device and found to be 1.0 μsec. Note that, in the fluorescence lifetime measurement, fluorescence having a light emission lifetime of 100 ns or shorter was determined as instant fluorescence and fluorescence having a lifetime of 0.1 μs or longer was determined as delayed fluorescence, and data of 3.0 to 6.2 μsec was used for calculation of a fluorescence lifetime (FIG. 5).

Patent 2024
11-dehydrocorticosterone compound 18 Fluorescence Light Light, Visible Medical Devices Toluene

Example 8

In order to elucidate the particle size dependence of the optical properties of nanomaterials, simulations have been performed using two models: the effective medium model (EMM) and finite element analysis+geometrical optics (FEA+GO). The simple EMM approach assumes that the nanoparticle has a single refractive index (n) and extinction ratio (k), and assumes that the particles are uniformly distributed throughout a low-refractive-index medium (FIG. 1A). The simulated spectrum (FIG. 1B) predicts a dramatic modulation of ca. 40% in the near-IR region of the electromagnetic spectrum using the optical constants of bulk VO2 in the monoclinic (M1) and tetragonal phases. The simulation assumes a constant refractive index of ca. 1.5, which is typical of polymeric media. These results underscore the need for a uniform distribution of particles within a low-refractive-index matrix to achieve the desired NIR modulation. The FEA+GO simulations allow for a more detailed elucidation of particle-size-dependent optical properties. Spectra have been simulated for a composite with a fill factor of 3.7 wt. % of spherical VO2 nanoparticles of varying diameters again assuming a temperature-independent refractive index of 1.5 for the polymeric media and the bulk optical constants for the insulating and metallic phases. As the diameter increases from 20 nm to 100 nm, the near-infrared modulation is observed to remain constant at ca. 40% (FIG. 1C). However, the visible light transmittance (at 680 nm) decreases from 80% to 68% for the low-temperature phase. When considering a composite of 100 nm long VO2 wires with varying diameters, the 50 nm and 100 nm diameter wires show a variation of ca. 45% in the near-infrared, whereas the 20 nm wires show a modulation of ca. 40% (FIG. 1D). Although the NIR modulation is slightly diminished for the 20 nm diameter nanowires, they retain superior visible light transmittance. The substantial diminution in visible light transmittance with increasing particle is derived from the scattering background contributed by larger particles. Agglomeration of particles will to first order mimic the effects of having larger particles. These simulations indicate that the viability of utilizing VO2 nanocrystals for effective thermochromic modulation will depend sensitively on their dimensions and their extent of dispersion.

Patent 2024
Cold Temperature Dietary Fiber Electromagnetics Extinction, Psychological Eye factor A Factor VII Light Light, Visible Metals Polymers Vision Volition

Example 4

The antibacterial efficacy of unaltered and experimental (doped) dental adhesive resins against non-disrupted cariogenic (caries producing) biofilms was further assessed in terms of relative luminescence units (RLUs) using a real-time luciferase-based bioluminescence assay. Toward this end, experimental dental adhesive resins containing either N—TiO2 NPs (5%-30%, v/v), N—F—TiO2 NPs (30%, v/v) and N—Ag—TiO2 NPs (30%, v/v) were synthesized by dispersing the nanoparticles in OBSP adhesive resin using a sonicator (4 cycles of 1 min, intervals of 15-sec between cycles; Q700, QSonica, USA). Two non-antibacterial (OBSP, and Scotchbond Multipurpose, 3M ESPE, USA) and one antibacterial (Clearfil SE Protect, Kuraray, Noritake Dental Inc., Japan) commercially available dental adhesive resins were also tested for antibacterial functionalities. Streptococcus mutans biofilms were grown (UA 159-ldh, JM 10; 37° C., microaerophilic) on the surfaces of disk-shaped specimens (n=18/group, d=6.0 mm, t=0.5 mm) for either 24 or 48 hours with or without continuous visible light irradiation (405±15 nm). One set of specimens was fabricated with OBSP and was treated with Chlorhexidine 2% (2 min) that served as our control group. Results for the antibacterial efficacies of both unaltered and experimental dental adhesive resins containing either doped or co-doped TiO2 NPs under continuous visible light irradiation for either 24 or 48 hours, demonstrated that all groups tested displayed similar antibacterial behaviors under continuous visible light irradiation. Such findings suggest that under the conditions investigated (wavelength and power intensity), visible light irradiation had a very strong antibacterial behavior that took place independently of the antibacterial activity of the substrate where biofilms were grown (either antibacterial or not). Such impact made impossible the determination of the materials' real antibacterial efficacies under such light irradiation conditions.

Experiments were then conducted under dark conditions; bacteria were grown in dark conditions for either 24 and 48 hours. The results indicated that the TiO2-containing adhesive resins were more antibacterial than commercially available non-antibacterial dental adhesive resins (such as OptiBond Solo Plus and Scotchbond Multipurpose). The experimental dental adhesive resins containing 30% (v/v) of nanoparticles (N—TiO2 NPs, N—F—TiO2 NPs and N—Ag—TiO2 NPs) displayed antibacterial efficacies in dark conditions that were similar to Clearfil SE Protect (Fluoride-releasing material, Kuraray, Noritake Dental Inc., Japan). S. mutans biofilms grown on specimens treated with chlorhexidine 2% (2 min) displayed the lowest RLU values amongst all groups investigated, thereby confirming the strong antibacterial behavior of non-immobilized chlorhexidine. In addition, the antibacterial effect was demonstrated to be concentration-dependent, wherein experimental adhesive resins containing higher concentrations of antibacterial nanoparticles (either doped or co-doped) displayed stronger antibacterial effects against non-disrupted S. mutans biofilms. Since long intra-oral irradiation periods (24-hour and 48-hour) are impractical and clinically not feasible, associated with the fact that these materials are intended to be used in the oral cavity's dark conditions, these results were considered of paramount importance and clinically relevant for the commercialization pathway of recently developed antibacterial and bioactive nano-filled dental adhesive resins.

Optical and mechanical properties of both unaltered and experimental dental adhesive resins containing 5%-30% (v/v, 5% increments) of N—TiO2 NPs were assessed in terms of color stability and biaxial flexure strength. Color stability (n=5) and biaxial flexure strength (n=8) specimens (d=6.0 mm, t=0.5 mm) were fabricated and tested using a color analysis software (ScanWhite, Darwin Syst., Brazil) and an Instron universal testing machine (cross-head rate=1.27 mm/min), respectively. Color stability measurements were performed immediately after specimen fabrication and after water storage (1, 2, 3, 4, 5, 6 months; 37° C.). The color stability results demonstrated that specimens fabricated using either unaltered or experimental dental adhesive resins containing N—TiO2 NPs (5%-30%, v/v) were subjected to color changes induced by long-term water storage. The highest color variations were observed at two months of water storage (37° C.) for specimens pertaining to experimental groups containing either 5% or 10% of N—TiO2 NPs. Specimens fabricated with unaltered OptiBond Solo Plus have demonstrated color variations that were similar to the color variations observed for the experimental group containing 20% N—TiO2 NPs. Specimens fabricated with 30% N—TiO2 NP-containing dental adhesive resins have shown the least amount of color variation throughout the investigation time (6-mo), and therefore, were considered as the most color stable amongst all materials investigated. From the esthetic standpoint, the human eye can only detect differences in color above a certain threshold (ΔE≥3).

In at least one embodiment, dental composition specimens fabricated with at 30% N—TiO2 NPs displayed color variations that were either lower than or close to the human eye detection capability, thereby corroborating the long-term use of these highly esthetic experimental dental adhesive resins. In at least certain embodiments, the dental compositions contain at least 5% to 80% (v/v) of doped-TiO2 NPs as disclosed herein, such as at least 5% (v/v), at least 6% (v/v), at least 7% (v/v), at least 8% (v/v), at least 9% (v/v), at least 10% (v/v), at least 11% (v/v), at least 12% (v/v), at least 13% (v/v), at least 14% (v/v), at least 15% (v/v), at least 16% (v/v), at least 17% (v/v), at least 18% (v/v), at least 19% (v/v), at least 20% (v/v), at least 21% (v/v), at least 22% (v/v), at least 23% (v/v), at least 24% (v/v), at least 25% (v/v), at least 26% (v/v), at least 27% (v/v), at least 28% (v/v), at least 29% (v/v), at least 30% (v/v), at least 31% (v/v), at least 32% (v/v), at least 33% (v/v), at least 34% (v/v), at least 35% (v/v), at least 36% (v/v), at least 37% (v/v), at least 38% (v/v), at least 39% (v/v), at least 40% (v/v), at least 41% (v/v), at least 42% (v/v), at least 43% (v/v), at least 44% (v/v), at least 45% (v/v), at least 46% (v/v), at least 47% (v/v), at least 48% (v/v), at least 49% (v/v), at least 50% (v/v), at least 51% (v/v), at least 52% (v/v), at least 53% (v/v), at least 54% (v/v), at least 55% (v/v), at least 56% (v/v), at least 57% (v/v), at least 58% (v/v), at least 59% (v/v), at least 60% (v/v), at least 61% (v/v), at least 62% (v/v), at least 63% (v/v), at least 64% (v/v), at least 65% (v/v), at least 66% (v/v), at least 67% (v/v), at least 68% (v/v), at least 69% (v/v), at least 70% (v/v), at least 71% (v/v), at least 72% (v/v), at least 73% (v/v), at least 74% (v/v), at least 75% (v/v), at least 76% (v/v), at least 77% (v/v), at least 78% (v/v), at least 79% (v/v), or at least 80% (v/v), with the balance comprising the curable adhesive resin material, and optionally other components as described elsewhere herein.

The present results demonstrate that experimental dental adhesive resins containing varying concentrations of N—TiO2 NPs display biaxial flexure strengths that are either similar or better than the strength observed for specimens fabricated with the unaltered OBSP. No differences were observed among the flexure strengths of experimental groups, thereby indicating that the presently disclosed materials can behave very similar to commercially available materials when subjected to masticatory forces.

Specimens (d=6.0 mm, t=0.5 mm) of the unaltered resins and experimental dental adhesive resins containing 30% N—TiO2 NPs, 30% N—F—TiO2 NPs and 30% N—Ag—TiO2 NPs were fabricated and characterized using the state of the art scanning electron microscope. This dual focused ion-beam microscope (Dual-FIB SEM/EDS) is capable, through a destructive process, to characterize and map the chemical composition and distribution of elements in three dimensions. The 3-D characterization and localization of components clearly demonstrated that experimental materials containing co-doped nanoparticles (e.g., 30% v/v, N—F—TiO2 NPs) displayed an optimized dispersion of filler particles (part of the original composition) when compared to the filler particle distribution observed on specimens fabricated with the unaltered dental adhesive resin. The 3-D images demonstrated that the experimental adhesive resins had more filler particles per unit volume with a more homogeneous size distribution than the filler fraction and size distribution observed on OptiBond Solo Plus samples. In addition, results showed that larger and more agglomerated filler particles tend to result in a polymer matrix containing more pores per unit volume. This finding was corroborated by the pore-size distribution calculated for the unaltered samples and experimental dental adhesive resin samples, where it is possible to observe that the quantity and sizes of pores formed in experimental materials were smaller when compared to the unaltered OptiBond Solo Plus samples.

In at least one embodiment, the present disclosure includes a dental composition, comprising doped and/or coated TiO2 NPs, and a curable resin material, wherein the curable resin material comprises a polymer precursor component. The TiO2 NPs may comprise at least one dopant or coating selected from the group consisting of N (nitrogen), Ag (silver), F (fluorine), P (phosphorus), and PO4 (phosphate). As noted above, in non-limiting embodiments, the dental composition may comprise a volume to volume ratio of doped TiO2 NPs to curable resin material in a range of 1% to 80% (v/v), 5% to 50% (v/v), or 10% to 40% (v/v), for example. The polymer precursor component may be photocurable. The polymer precursor may be selected from the group consisting of acrylates, methacrylates, dimethacrylates, epoxies, vinyls and thiols. The polymer precursor may be selected from the group consisting of ethylenedimethacrylate (“EDMA”), bisphenol A glycidyl methacrylate (“BisGMA”), triethyleneglycol dimethacrylate (“TEGDMA”), 1,6-bis(methacryloxy-2-ethoxycarbonylamino)-2,4,4-trimethylhexane (UDMA), pyromellitic glycerol dimethacrylate (PMGDM), and 2-hydroxyethyl methacrylate (HEMA). The dental composition may comprise at least one solvent. The at least one solvent may be selected from the group consisting of water, ethanol, methanol, toluene, ethyl ether, cyclohexane, isopropanol, chloroform, ethyl acetate, acetone, hexane, and heptanes. The dental composition may comprise a polymerization initiator. The dental composition may comprise a filler. The dental composition may be selected from the group consisting of dental resins, dental bonding agents, dental adhesives, dental cements, dental restoratives, dentals coatings, dental sealants, acrylic resins, and denture teeth. The dental composition may comprise bioactive and/or antibacterial activity in the absence of visible or ultraviolet light. The dental composition may be used to form a hardened dental article after a photocuring step. In at least one embodiment, the disclosure includes an in vivo dental process, comprising applying the dental composition to at least one of a dental restorative and a dental substrate, and causing the dental restorative to be bonded to the dental substrate via the dental composition after a step of photocuring the dental composition.

Accordingly, the present disclosure is directed to at least the following non-limiting embodiments:

Clause 1. In at least one embodiment the present disclosure includes a dental composition, comprising doped TiO2 nanoparticles, and a curable resin material, wherein the curable resin material comprises a polymer precursor component.

Clause 2. The dental composition of clause 1, wherein the doped TiO2 nanoparticles comprise at least one dopant selected from the group consisting of N (nitrogen), Ag (silver), F (fluorine), P (phosphorus), and PO4 (phosphate).

Clause 3. The dental composition of clause 1 or 2, wherein the doped TiO2 nanoparticles further comprise at least one second dopant selected from the group consisting of N, Ag, F, P, and PO4.

Clause 4. The dental composition of any one of clauses 1-3, comprising a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 1% to 80% (v/v).

Clause 5. The dental composition of any one of clauses 1-4, comprising a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 5% to 50% (v/v).

Clause 6. The dental composition of any one of clauses 1-5, comprising a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 10% to 40% (v/v).

Clause 7. The dental composition of any one of clauses 1-6, wherein the polymer precursor component is photocurable.

Clause 8. The dental composition of any one of clauses 1-7, wherein the polymer precursor is selected from the group consisting of acrylates, methacrylates, dimethacrylates, epoxies, vinyls and thiols.

Clause 9. The dental composition of any one of clauses 1-8, wherein the polymer precursor is at least one selected from the group consisting of ethylenedimethacrylate (EDMA), bisphenol A glycidyl methacrylate (BisGMA), triethyleneglycol dimethacrylate (TEGDMA), 1,6-bis(methacryloxy-2-ethoxycarbonylamino)-2,4,4-trimethylhexane (UDMA), pyromellitic glycerol dimethacrylate (PMGDM), and 2-hydroxyethyl methacrylate (HEMA).

Clause 10. The dental composition of any one of clauses 1-9, further comprising at least one solvent.

Clause 11. The dental composition of any one of clauses 1-10, further comprising a solvent selected from the group consisting of water, ethanol, methanol, acetone, toluene, ethyl ether, cyclohexane, isopropanol, chloroform, ethyl acetate, hexane, and heptanes.

Clause 12. The dental composition of any one of clauses 1-11, further comprising a polymerization initiator.

Clause 13. The dental composition of any one of clauses 1-12, further comprising a filler.

Clause 14. The dental composition of any one of clauses 1-13, wherein the curable resin material is selected from the group consisting of dental resins, dental bonding agents, dental adhesives, dental cements, dental restoratives, dentals coatings, dental sealants, acrylic resins, and denture teeth.

Clause 15. The dental composition of any one of clauses 1-14, comprising bioactive and/or antibacterial activity in the absence of visible or ultraviolet light.

Clause 16. A kit for forming a dental composition, the kit comprising doped TiO2 nanoparticles, and a curable resin material, wherein the curable resin material comprises a polymer precursor component.

Clause 17. The kit of clause 16, wherein the doped TiO2 nanoparticles comprise at least one dopant selected from the group consisting of N (nitrogen), Ag (silver), F (fluorine), P (phosphorus), and PO4 (phosphate).

Clause 18. The kit of clause 16 or 17, wherein the doped TiO2 nanoparticles further comprise at least one second dopant selected from the group consisting of N, Ag, F, P, and PO4.

Clause 19. The kit of any one of clauses 16-18, comprising sufficient doped TiO2 nanoparticles and curable resin material such that the dental composition comprises a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 1% to 80% (v/v).

Clause 20. The kit of any one of clauses 16-19, comprising sufficient doped TiO2 nanoparticles and curable resin material such that the dental composition comprises a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 5% to 50% (v/v).

Clause 21. The kit of any one of clauses 16-20, comprising sufficient doped TiO2 nanoparticles and curable resin material such that the dental composition comprises a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 10% to 40% (v/v).

Clause 22. The kit of any one of clauses 16-21, wherein the polymer precursor component is photocurable.

Clause 23. The kit of any one of clauses 16-22, wherein the polymer precursor is selected from the group consisting of acrylates, methacrylates, dimethacrylates, epoxies, vinyls and thiols.

Clause 24. The kit of any one of clauses 16-23, wherein the polymer precursor is at least one selected from the group consisting of ethylenedimethacrylate (EDMA), bisphenol A glycidyl methacrylate (BisGMA), triethyleneglycol dimethacrylate (TEGDMA), 1,6-bis(methacryloxy-2-ethoxycarbonylamino)-2,4,4-trimethylhexane (UDMA), pyromellitic glycerol dimethacrylate (PMGDM), and 2-hydroxyethyl methacrylate (HEMA).

Clause 25. The kit of any one of clauses 16-24, further comprising at least one solvent.

Clause 26. The kit of any one of clauses 16-25, further comprising a solvent selected from the group consisting of water, ethanol, methanol, acetone, toluene, ethyl ether, cyclohexane, isopropanol, chloroform, ethyl acetate, hexane, and heptanes.

Clause 27. The kit of any one of clauses 16-26, further comprising a polymerization initiator for combining with the doped TiO2 nanoparticles, and curable resin material.

Clause 28. The kit of any one of clauses 16-27, further comprising a filler for combining with the doped TiO2 nanoparticles, and curable resin material.

Clause 29. The kit of any one of clauses 16-28, wherein the curable resin material is selected from the group consisting of dental resins, dental bonding agents, dental adhesives, dental cements, dental restoratives, dentals coatings, dental sealants, acrylic resins, and denture teeth.

Clause 30. The kit of any one of clauses 16-29, wherein the dental composition has bioactive and/or antibacterial activity in the absence of visible or ultraviolet light.

Clause 31. A hardened dental article formed from the dental composition of any one of clauses 1-15, after the dental composition has been photocured.

Clause 32. An in vivo dental process, comprising: applying a dental composition to a dental surface, the dental composition comprising doped TiO2 nanoparticles, and a curable resin material, wherein the curable resin material comprises a polymer precursor component; and causing the dental composition to be bonded to the dental surface by photocuring the dental composition.

Clause 33. The dental process of clause 32, wherein the dental surface is at least one of a dental restorative and a dental substrate.

Clause 34. The dental process of clause 32 or 33, wherein the doped TiO2 nanoparticles comprise at least one dopant selected from the group consisting of N (nitrogen), Ag (silver), F (fluorine), P (phosphorus), and PO4 (phosphate).

Clause 35. The dental process of any one of clauses 32-34, wherein the doped TiO2 nanoparticles further comprise at least one second dopant selected from the group consisting of N, Ag, F, P, and PO4.

Clause 36. The dental process of any one of clauses 32-35, wherein the dental composition comprises a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 1% to 80% (v/v).

Clause 37. The dental process of any one of clauses 32-36, wherein the dental composition comprises a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 5% to 50% (v/v).

Clause 38. The dental process of any one of clauses 32-37, wherein the dental composition comprises a volume to volume ratio of doped TiO2 nanoparticles to curable resin material in a range of 10% to 40% (v/v).

Clause 39. The dental process of any one of clauses 32-38, wherein the polymer precursor component is photocurable.

Clause 40. The dental process of any one of clauses 32-39, wherein the polymer precursor is selected from the group consisting of acrylates, methacrylates, dimethacrylates, epoxies, vinyls and thiols.

Clause 41. The dental process of any one of clauses 32-40, wherein the polymer precursor is at least one selected from the group consisting of ethylenedimethacrylate (EDMA), bisphenol A glycidyl methacrylate (BisGMA), triethyleneglycol dimethacrylate (TEGDMA), 1,6-bis(methacryloxy-2-ethoxycarbonylamino)-2,4,4-trimethylhexane (UDMA), pyromellitic glycerol dimethacrylate (PMGDM), and 2-hydroxyethyl methacrylate (HEMA).

Clause 42. The dental process of any one of clauses 32-41, wherein the dental composition further comprises at least one solvent.

Clause 43. The dental process of any one of clauses 32-42, further comprising a solvent selected from the group consisting of water, ethanol, methanol, acetone, toluene, ethyl ether, cyclohexane, isopropanol, chloroform, ethyl acetate, hexane, and heptanes.

Clause 44. The dental process of any one of clauses 32-43, wherein the dental composition further comprises a polymerization initiator.

Clause 45. The dental process of any one of clauses 32-44, wherein the dental composition further comprises a filler.

Clause 46. The dental process of any one of clauses 32-45, wherein the curable resin material is selected from the group consisting of dental resins, dental bonding agents, dental adhesives, dental cements, dental restoratives, dentals coatings, dental sealants, acrylic resins, and denture teeth.

Clause 47. The dental process of any one of clauses 32-46, wherein after curing, the dental composition has bioactive and/or antibacterial activity in the absence of visible or ultraviolet light.

Clause 48. The dental process of any one of clauses 32-47, wherein the dental surface has been acid-etched prior to the application of the dental composition thereon.

While the present disclosure has been described herein in connection with certain embodiments so that aspects thereof may be more fully understood and appreciated, it is not intended that the present disclosure be limited to these particular embodiments. On the contrary, it is intended that all alternatives, modifications and equivalents are included within the scope of the present disclosure as defined herein. Thus the examples described above, which include particular embodiments, will serve to illustrate the practice of the inventive concepts of the present disclosure, it being understood that the particulars shown are by way of example and for purposes of illustrative discussion of particular embodiments only and are presented in the cause of providing what is believed to be the most useful and readily understood description of procedures as well as of the principles and conceptual aspects of the present disclosure. Changes may be made in the formulation of the various compositions described herein, the methods described herein or in the steps or the sequence of steps of the methods described herein without departing from the spirit and scope of the present disclosure. Further, while various embodiments of the present disclosure have been described in claims herein below, it is not intended that the present disclosure be limited to these particular claims.

Patent 2024
2-hydroxyethyl methacrylate Acetone Acids Acrylates Acrylic Resins Anti-Bacterial Agents Bacteria Biofilms Bioluminescent Measurements Bisphenol A-Glycidyl Methacrylate chemical composition Chlorhexidine Chloroform Cyclohexane Dental Caries Dental Cements Dental Resins Dentures Epoxy Resins Ethanol ethyl acetate Ethyl Ether Fluorides Fluorine Focused Ion Beam Scanning Electron Microscopy Glycerin Head Heptanes Hexanes Homo sapiens Isopropyl Alcohol JM 10 Light Light, Visible Luciferases Luminescence Methacrylates Methanol Microscopy Mouth Diseases Nitrogen OptiBond SOLO Phosphates Phosphorus Pit and Fissure Sealants Polymerization Polymers Polyvinyl Chloride Radiotherapy Resins, Plant Scanning Electron Microscopy Sclerosis Scotchbond Silver Solvents Streptococcus mutans Sulfhydryl Compounds T.E.R.M. composite resin titanium dioxide Toluene Tooth triethylene glycoldimethacrylate Ultraviolet Rays Vision

Example 4

Cyclohexene (1a) and polar organic solvent, preferably acetonitrile in (1:2 to 1:10 weight ratio with respect to the substrate) was taken in to a 60 ml vessel. Further, the hybrid photocatalyst (1 to 10 mol % of the substrate) was added and the resulting mixture was saturated with CO2 by purging at 1 atm pressure. The reaction vessel was sealed and kept in the dark condition under continuous stirring. The conversion of the olefin was examined by GC-FID based on the unreacted substrate. There was no conversion observed that illustrates that visible illumination was essential for the oxidation.

Patent 2024
acetonitrile Alkenes Blood Vessel cyclohexene Hybrids Light, Visible Pressure Solvents
The
PCA of CeO2 and doped QDs were assessed through MB reduction
as depicted in Figure 2. First, 30 mL of MB solution with the suspension of 5 mg of synthesized
samples was prepared and placed in the dark for 30 min. The resulting
solution was exposed to a visible light source (Hg lamp) for 2 h,
and 4 mL of the solution was taken after every 30 min. A UV–vis
spectrophotometer determined the dye decolorization. The photocatalytic
efficiency of QDs was found using eq 1. C0 and Ct are related
to MB’s initial and final concentrations in the absence and
presence of light, respectively.
Publication 2023
Light Light, Visible

Top products related to «Light, Visible»

Sourced in Japan, China, United Kingdom, New Zealand, United States
The UV-2550 is a UV-Vis spectrophotometer manufactured by Shimadzu. It is designed to measure the absorbance or transmittance of samples in the ultraviolet and visible light wavelength ranges.
Sourced in Japan, United States, China, Germany, United Kingdom, Spain, Canada, Czechia
The S-4800 is a high-resolution scanning electron microscope (SEM) manufactured by Hitachi. It provides a range of imaging and analytical capabilities for various applications. The S-4800 utilizes a field emission electron gun to generate high-quality, high-resolution images of samples.
Sourced in Japan, United States, Germany, Switzerland, China, United Kingdom, Italy, Belgium, France, India
The UV-1800 is a UV-Visible spectrophotometer manufactured by Shimadzu. It is designed to measure the absorbance or transmittance of light in the ultraviolet and visible wavelength regions. The UV-1800 can be used to analyze the concentration and purity of various samples, such as organic compounds, proteins, and DNA.
Sourced in Japan, United States, China, Italy, Germany
The Shimadzu UV-2450 is a high-performance UV-Vis spectrophotometer. It is designed to analyze the absorption spectra of various liquid and solid samples within the ultraviolet and visible light ranges.
Sourced in Japan, China, Singapore, United States, France
The Shimadzu UV-2600 is a double-beam UV-Vis spectrophotometer designed for accurate and reliable sample analysis. It features a wavelength range of 185 to 900 nm and can measure absorbance, transmittance, and reflectance. The UV-2600 provides high-resolution data and supports a variety of sampling accessories for diverse applications.
Sourced in United States, Germany, Canada, United Kingdom, China, Australia
PClamp 10 software is a data acquisition and analysis platform for electrophysiology research. It provides tools for recording, analyzing, and visualizing electrical signals from cells and tissues.
Sourced in Japan
The GC-8A is a gas chromatograph manufactured by Shimadzu. It is designed to separate and analyze a variety of gaseous and volatile samples. The GC-8A utilizes a carrier gas to transport the sample through a separation column where the components are separated based on their boiling points and interactions with the stationary phase.
Sourced in United States, Singapore, Germany, United Kingdom, Italy
The Lambda 35 is a UV/Vis spectrophotometer designed for a wide range of applications in the life sciences and chemical industries. It features a dual-beam optical system and a monochromator for precise wavelength selection. The instrument is capable of measuring absorption, transmittance, and absorbance spectra.
Sourced in Germany, United States, Japan, United Kingdom, China, France, India, Greece, Switzerland, Italy
The D8 Advance is a versatile X-ray diffractometer (XRD) designed for phase identification, quantitative analysis, and structural characterization of a wide range of materials. It features advanced optics and a high-performance detector to provide accurate and reliable results.
Sourced in Japan, United States
The UV-3600 is a UV-Vis-NIR spectrophotometer manufactured by Shimadzu. It is capable of measuring absorbance, transmittance, and reflectance spectra in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum.

More about "Light, Visible"

Visible light, also known as optical radiation or photosynthetic active radiation (PAR), refers to the portion of the electromagnetic spectrum that is visible to the human eye.
This type of light, typically ranging from approximately 380 to 740 nanometers in wavelength, is essential for various biological and technological processes, including photosynthesis, vision, and illumination.
Researchers studying visible light can utilize a variety of specialized equipment and software to optimize their research protocols.
For example, UV-2550, UV-1800, UV-2450, UV-2600, and UV-3600 are spectrophotometers that can be used to analyze and measure the properties of visible light.
The S-4800 scanning electron microscope and the D8 Advance X-ray diffractometer can also provide valuable insights into the interactions of visible light with various materials and samples.
Additionally, the PClamp 10 software can be used to record and analyze electrical signals, which can be useful for studying the effects of visible light on biological systems.
The GC-8A gas chromatograph and the Lambda 35 UV/Vis spectrophotometer are other instruments that can be employed in visible light research, providing data on the chemical and optical properties of materials and samples.
By utilizing these specialized tools and techniques, researchers can optimize their light, visible research protocols and enhance the reproducibility and accuracy of their findings.
To further support their research efforts, researchers can explore the AI-driven platform PubCompare.ai, which helps locate the best protocols from literature, pre-prints, and patents through intelligent comparisons.
This platform can enhance reproducibility and accuracy, enabling researchers to experince the future of research optimization today.