Microwaves
They are used in a variety of applications, including radar, telecommunications, and heating/cooking.
Microwaves can penetrate many materials and are absorbed by water and other polar molecules, making them useful for heating and drying.
They are also used in medical imaging and therapy, as well as in scientific research.
Microwave technology continues to evolve, with new applications and improvements in efficiency and safety being developed.
Resaerchers can utilize tools like PubCompare.ai to easily locate protocols and identify the best microwave-based approaches for their needs, streamlining their workflow and accelerating discoveries.
Most cited protocols related to «Microwaves»
The digested samples were then introduced into the ICP-MS, where the sample components were decomposed into their atomic constituents. TotalQuant method was used together with Perkin Elmer Pure Plus NexION Dual Detector Calibration Solution standard. This method has the advantage of high sensitivity (ng × L−1 range), wide linear dynamic detection range and specificity for the accurate detection and quantification of heavy metals. TotalQuant calibration was achieved using 200 µg/L of Al, Ba, Ce, Co, Cu, In, Li, Mg, Mn, Ni, Pb, Tb, U and Zn. The quality of the analytical data was guaranteed by implementing standard quality assurance procedures. Each sample was analysed in duplicates. After every 10 samples, a certified standard and a blank solution were run to check for contamination and drift. All the chemicals and reagents used were of certified analytical grade and procured from Merck (South Africa). The detection limits for As, Pb, Hg, Cd, Cr, Co, Ni, Cu and Zn were 0.015, 0.0003, 0.0003, 0.005, 0.0009, 0.001, 0.006, 0.004 and 0.04 µg/L, respectively. The heavy metal concentrations obtained from the ICP-MS analysis in mg/L were then converted into mg/kg.
For each recruited subject, ROS production rate was determined at rest by means of a recently developed EPR method [16 ] analyzing 50 μL samples immediately treated with CMH solution (1 : 1). 50 μL of the obtained solution was put in a glass EPR capillary tube (Noxygen Science Transfer & Diagnostics, Germany) that was placed inside the cavity of the E-scan spectrometer for data acquisition (
Acquisition parameters were microwave frequency 9.652 GHz; modulation frequency 86 kHz; modulation amplitude 2.28 G; sweep width 60 G, microwave power 21.90 mW, number of scans 10; and receiver gain 3.17·101. Sample temperature was firstly stabilized and then kept at 37°C by the Temperature & Gas Controller “Bio III” unit, interfaced to the spectrometer. Spectra were recorded and analyzed by using Win EPR software (2.11 version) standardly supplied by Bruker.
EPR measurements allowed us to attain a relative quantitative determination of ROS production rate in samples. All data were, in turn, converted in absolute concentration levels (μmol·min−1) by adopting CP ∙ (3-Carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy) stable radical as external reference.
Most recents protocols related to «Microwaves»
Example 2
Thuricide BT Caterpillar Control (Southern Ag) was used as the source of viable Bacillus thuringiensis spores (6 million spores/mg). A dilution series was produced from Thuricide BT to show that the material is viable and could be readily cultured on Petrifilm plates. Three DEE chemical compositions were evaluated: (1) about 0.06 M copper (II) chloride in water, (2) about 1 wt.-% surfactant and about 10 wt.-% PCSR in water, and (3) about 1 wt.-% surfactant and about 1 wt.-% PCSR in water. OxiClean was used as the PCSR and Tween 80 as the surfactant. During testing of each DEE composition, the DEE composition was added to the spores to yield a 1:100 dilution of spores and exposed to 2.45 GHz microwave radiation for about 10 s. After exposure, the cells were centrifuged and washed to remove the DEE composition and then plated on Petrifilm and cultured for 24 h at 30° C. When using each of the three DEE compositions shown above, the decontamination method destroyed BT spores at 6-7 log kill levels and demonstrated the efficacy of bleach-free treatments.
Example 3
Penicillium roqueforti spores were suspended in water. Four DEE chemical compositions were evaluated: (1) 0.06 M copper (II) ions in water, (2) 1 wt.-% surfactant and 10 wt.-% PCSR, (3) 1 wt.-% surfactant and 1 wt.-% PCSR, and (4) 0.5 wt.-% bleach. OxiClean was used as the PCSR and Tween 80 as the surfactant. Clorox was used as bleach. Each DEE composition was added to 0.1 mg/ml suspension of mold spores and exposed to 2.45 GHz microwave for 10 s. After exposure, the cells were centrifuged, washed to remove the DEE chemicals and then plated on Petrifilm and cultured. With the DEE composition 0.06 M copper (II) ions in water and 1 wt.-% surfactant and 10 wt.-% sodium percarbonate, a 6-7 log reduction in P. roqueforti spores (6-7 log kill levels) was realized.
Example 11
Alternative feedstocks to caking coals were explored as source materials for carbon foam. In one series of experiments, a foaming pitch derived from non-caking coal prepared as described above was used as a feedstock.
90 g of foaming pitch with a particle size range of 30-50 mesh was weighed and transferred to a 250 mL beaker and 15 g of a flux agent composed of high fructose corn syrup and recycled coal volatiles as described previously was added. The contents were mixed for a period of time until the mixture was homogeneous. The foaming mixture was loaded into a crucible and converted into carbon foam using microwave radiation at 20% power for 5 min. The foam was covered with a ceramic lid and calcined in one step in a non-oxidizing environment as described previously.
A thin layer of a graphene-type compound was found on the lid of the crucible after this experiment, showing that the method can provide an additional carbon species from vapors expelled during the heat treatment and calcination processes disclosed herein. Examples of graphene-type layers formed on carbon foams can be seen in
Example 1
A glass article comprising aluminosilicate glass as commercially available under the designation AS 87 was first cleaned in an industrial dishwasher in order to clean the surfaces of the glass article from dirt such as grease, fingerprints, or the like. Then, a 0.25 wt % solution of a modified fluoroalkyl oligosiloxane in ethanol (1 g of fluoroalkyl oligosiloxane in 395 g of ethanol) was applied over the entire surface of the glass article. In this way, a surface of the glass article was made hydrophobic. More generally, without being limited to the example specifically described here, it is also possible that only an area of the at least one surface of the glass article is made hydrophobic, for example by covering the area or areas of the at least one surface, which are not intended to be hydrophobized. Subsequently, a 5% solution of a surfactant in ethanol and a mixture of different glycol ethers was applied to the hydrophobized surface of the glass article by spraying. Then, plasma etching was performed in a CF4-containing atmosphere in a microwave plasma at a pressure of 10 mbar.
Example 12
In some experiments, larger samples having compositions similar to those described previously (i.e., containing coal powder, high fructose corn syrup, and graphite) but with a top surface area of approximately 1 square foot were prepared. Coal flux mixtures were prepared using a commercial mixer. A square sample container 1 foot on each side was constructed and a large-chamber microwave with rotating coil was obtained for these experiments. Several samples of this size were manufactured successfully using the heating protocols described previously. The container used for large-scale foam production as well as an example large piece of foam are seen in
It will be apparent to those skilled in the art that various modifications and variations can be made in the present disclosure without departing from the scope or spirit of the disclosure. Other embodiments of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the following claims.