Rivers
These natural waterbodies flow continuously, carving landscapes and supporting diverse flora and fauna.
They serve as important resources for human activities such as transportation, irrigation, and recreation.
Studying the characteristics and processes of rivers, including their hydrology, geomorphology, and ecology, is crucial for understanding and managing these complex systems.
Researchers can leverage cutting-edge technologies like AI-driven platforms to optimize their river studies and uncover the most effective research approaches.
Most cited protocols related to «Rivers»
Most recents protocols related to «Rivers»
Example 47
CD-1 (n=3 per experimental group; female; 6-7-week-old; 21-24 g, Charles River) mice were infected with P. berghei (ANKA GFP-luc) for 96 h before treatment with vehicle or compound (day 0). On day 2, female A. stephensi mosquitoes were allowed to feed on the mice for 20 min. After 1 week (day 9), the midguts of the mosquitoes were dissected out and oocysts were enumerated microscopically (12.5× magnification).
Example 46
CD-1 mice (n=4 per experimental group; female; 6-7-week-old; 20-24 g, Charles River) were inoculated intravenously with approximately 1×105 P. berghei (ANKA GFP-luc) sporozoites freshly dissected from A. stephensi mosquitoes. Immediately after infection, the mice were treated with single oral doses of Compound; infection was monitored as described for the P. berghei erythrocytic-stage assay. For time-course experiments, the time of compound treatment (single oral dose of 10 mg kg−1) was varied from 5 days before infection to 2 days after infection.
Example 6
Tumor cell migration is essential for tumor metastasis. Representative compounds described herein were investigated their effects on tumor metastasis in an animal model. Tumor cells (4T1 breast tumor cells) were injected into the mammary fat-pad of mice. The metastasis of these breast tumor cells from the mammary gland to the lung was monitored by the clonogenic assay.
Balb/c mice were purchased from Charles River. All animal procedures were approved by the Animal Care and Use Committees of the Weill Cornell Medical College and performed in accordance with institutional polices. For xenograft tumor metastasis studies, 5×105 4T1 cells were suspended in 100 μL PBS and injected subcutaneously into the mammary glands of 6-8 week old female Balb/c mice. Tumor incidence was monitored for 21 days after injection. Tumor size was measured three times a week, and the volume was calculated using the formula length×width2×0.5. Compound treatment was initiated 7 days after tumor implantation; animals were administered daily with indicated dose for 2 weeks. On day 28, the mice were sacrificed. Numbers of metastatic 4T1 cells in lungs were determined by the clonogenic assay. In brief, lungs were removed from each mouse on day 28, finely minced and digested for 2 h at 37° C. in 5 mL of enzyme cocktail containing PBS and 1 mg/mL collagenase type IV on a rocker. After incubation, samples were filtered through 70-μm nylon cell strainers and washed twice with PBS. Resulting cells were suspended, plated with a series of dilutions in 10-cm tissue culture dishes in RPMI-1640 medium containing 60 μM thioguanine, metastasized tumor cells formed foci after 14 days, at which time they were fixed with methanol and stained with 0.03% methylene blue for counting. Data were expressed as mean±S.D. and analyzed by Student's t test with significance defined as p<0.05.
When tested in this animal model at 100 mg/kg, Compounds 10 and 43 showed more than 90% inhibition of tumor metastasis. The compounds described herein are contemplated to be useful for treating a condition or disorder mediated by fascin activity and/or tumor metastasis.
Example 7
Sepsis modeling was performed as described by Gorringe A. R., Reddin, K. M., Voet P. and Poolman J. T. (Methods Mol. Med. 66, 241 (Jan. 1, 2001)) and Johswich, K. O. et al. (Infect. Immun. 80, 2346 (Jul. 1, 2012)). Groups of 6 eight-week-old C57BL/6 mice (Charles River Laboratories) were inoculated via intraperitoneal injection with N. meningitidis strain B16B6, B16B6 Δtbpb, or B16B6 Δnmb0313 (N=2 independent experiments). To prepare inoculums, bacterial strains for infection were grown overnight on GC agar, resuspended and then grown for 4 h in 10 ml of Brain Heart Infusion (BHI) medium at 37° C. with shaking. Cultures were adjusted such that each final 500 μl inoculum contained 1×106 colony forming units and 10 mg human holo-transferrin. Mice were monitored at least every 12 h starting 48 h before infection to 48 h after infection for changes in weight, clinical symptoms and bacteremia. Mice were scored on a scale of 0-2 based on the severity of the following clinical symptoms: grooming, posture, appearance of eyes and nose, breathing, dehydration, diarrhea, unprovoked behavior, and provoked behavior. Animals reaching endpoint criteria were humanely euthanized. Animal experiments were conducted in accordance with the Animal Ethics Review Committee of the University of Toronto.
Example 15
Diet Induced Obese (DIO) mice were purchased from Charles River and administrated by s.c. route with GLP1R agonist or GLP1R/GCGR dual agonist. Mouse body weight and food intake were monitored daily for 2 weeks, and followed before (5 days in total) and during treatment (5-weeks in total). After 5 weeks, mice were sacrificed and visceral fat mass were taken out and weighed.
Dose dependent weight loss induced by mTA4 or mTA37 (see Table 6) is shown in
Top products related to «Rivers»
More about "Rivers"
These natural waterbodies flow continuously, carving landscapes and supporting diverse flora and fauna.
They serve as important resources for human activities such as transportation, irrigation, and recreation.
Studying the characteristics and processes of rivers, including their hydrology, geomorphology, and ecology, is crucial for understanding and managing these complex systems.
Researchers can leverage cutting-edge technologies like AI-driven platforms to optimize their river studies and uncover the most effective research approaches.
PubCompare.ai, for example, revolutionizes river research by enabling scientists to locate the best protocols from literature, preprints, and patents through smart comparisons.
This tool can help researchers working with a variety of animal models, including C57BL/6 mice, Sprague-Dawley rats, BALB/c mice, C57BL/6J mice, BALB/c nude mice, male Sprague-Dawley rats, Wistar rats, and CD-1 mice, to optimize their river studies and uncover the most effective research approaches.
Undestanding the dynamics and processes of rivers, such as their hydrology, geomorphology, and ecology, is crucial for managing these complex systems.
Leveraging cutting-edg AI-driven platforms like PubCompare.ai can help researchers working with common animal models, like C57BL/6, BALB/c, and Sprague-Dawley, to locate the best protocols and optimize their river studies.