REVIGO is a server-side Java web application running on a Glassfish 3 application server. For data visualization, REVIGO relies on Google Motion Chart for scatterplots, Cytoscape Web [12] (link) for graphs and DrasticTreemap for treemaps. For multidimensional scaling, the MSDJ library [19] is used.
For calculation of semantic similarity measures between GO terms, REVIGO relies on pre-computed information content (IC) for the GO terms. The IC is calculated as a negative logarithm of the GO term's relative frequency in a reference database – the EBI GOA database [20] (link) – which annotates all UniProt entries with GO terms. The user may optionally decide to select the database with one of the 11 species-specific GOA subsets for common model organisms, in order to fine-tune the calculation of semantic distances (which rely on IC) for the problem at hand. If the particular organism is not offered in REVIGO, the closest available organism or the default UniProt database should generally be adequate replacements, assuming that the relative frequencies of gene functions in the user's genome are not far from the ones in the selected genome, or in case UniProt was selected, from the overall trends in the genomic databases.
REVIGO supports four semantic similarity measures based on the concept of the “most informative common ancestor”: Lin's, Resnik's, Jiang and Conrath's measures, and the SimRel measure [8] (link). These and other measures and the role of the IC in their calculation are reviewed in [12] (link). The employed semantic similarity measures are quite robust with regard to future changes in the EBI GOA database due to new or updated annotations, as they don't rely on the GO annotations of each particular gene, but only on the terms' overall IC, which is expected to change little with time. Therefore, an aggressive update schedule is not necessary for REVIGO, and the underlying Gene Ontology and the EBI GOA database will normally be updated on a yearly basis, and more frequently in case of a large-scale release of new GO terms by the GO Consortium.
REVIGO also has a facility for integration with Web servers/software which produce lists of GO categories, typically by testing for statistically significant enrichment of a variable in GO terms; seeIntroduction for several examples. Owners of such Web servers can use a HTTP POST request to pre-populate REVIGO's input form with output of their server; please refer to the online instructions for technical details.
REVIGO is freely available fromhttp://revigo.irb.hr/ . Any modern internet browser with Adobe Flash capabilities is sufficient to access the server; additionaly, client-side Java is required if Cytoscape [13] (link) is invoked via Java Web Start.
For calculation of semantic similarity measures between GO terms, REVIGO relies on pre-computed information content (IC) for the GO terms. The IC is calculated as a negative logarithm of the GO term's relative frequency in a reference database – the EBI GOA database [20] (link) – which annotates all UniProt entries with GO terms. The user may optionally decide to select the database with one of the 11 species-specific GOA subsets for common model organisms, in order to fine-tune the calculation of semantic distances (which rely on IC) for the problem at hand. If the particular organism is not offered in REVIGO, the closest available organism or the default UniProt database should generally be adequate replacements, assuming that the relative frequencies of gene functions in the user's genome are not far from the ones in the selected genome, or in case UniProt was selected, from the overall trends in the genomic databases.
REVIGO supports four semantic similarity measures based on the concept of the “most informative common ancestor”: Lin's, Resnik's, Jiang and Conrath's measures, and the SimRel measure [8] (link). These and other measures and the role of the IC in their calculation are reviewed in [12] (link). The employed semantic similarity measures are quite robust with regard to future changes in the EBI GOA database due to new or updated annotations, as they don't rely on the GO annotations of each particular gene, but only on the terms' overall IC, which is expected to change little with time. Therefore, an aggressive update schedule is not necessary for REVIGO, and the underlying Gene Ontology and the EBI GOA database will normally be updated on a yearly basis, and more frequently in case of a large-scale release of new GO terms by the GO Consortium.
REVIGO also has a facility for integration with Web servers/software which produce lists of GO categories, typically by testing for statistically significant enrichment of a variable in GO terms; see
REVIGO is freely available from
Full text: Click here