Reads were filtered using a minimum mapping quality of 20 (MAPQ). Variant calling was performed using SamTools (Li et al., 2009 (link)) and BcfTools. When using individual calls without base alignment quality (BAQ) model, (Li, 2011 (link)) a total of 1,036,435 homozygous SNPs were detected. Using multi-sample calling methods and BAQ model, (Li, 2011 (link)) the number of homozygous SNPs was reduced to 204,250. Variant annotation and filtering was performed using the software SnpEff (Cingolani et al., Fly, in press) and SnpSift, described below.
Streams
They serve a variety of important functions, including drainage, irrigation, and the transport of water, sediment, and nutrients.
Streams can range from small brooks and creeks to large rivers, and they play a crucial role in the hydrological cycle and the overall health of ecosystems.
Researchers studying streams may investigate topics such as hydrology, ecology, water quality, and the impacts of human activities on stream environments.
The study of streams is an important field that contributes to our understanding of freshwater systems and informs efforts to manage and conserve these vital natural resources.
Most cited protocols related to «Streams»
Reads were filtered using a minimum mapping quality of 20 (MAPQ). Variant calling was performed using SamTools (Li et al., 2009 (link)) and BcfTools. When using individual calls without base alignment quality (BAQ) model, (Li, 2011 (link)) a total of 1,036,435 homozygous SNPs were detected. Using multi-sample calling methods and BAQ model, (Li, 2011 (link)) the number of homozygous SNPs was reduced to 204,250. Variant annotation and filtering was performed using the software SnpEff (Cingolani et al., Fly, in press) and SnpSift, described below.
We hypothesized that to improve thread scaling we should restructure the input and output critical sections. Our first goal was to reduce the time spent in the critical section by deferring as much computation until after the critical section as possible. Our second goal was to reduce the total number of times the critical section was entered. This reduces overhead incurred by locking and unlocking upon entering and exiting.
The original strategy (O-parsing) both reads and parses a sequencing read in the critical section (CS). We developed three variants on this approach (
Pseudocode for four synchronized parsing strategies
Note: Red code is inside the critical section (CS). Original (O) parsing both reads and parses in the CS. Deferred parsing (D) uses the CS to read the next record into a buffer, counting four newlines to find the record boundary, but defers parsing until after the CS. Batch deferred parsing (B) is like (D) but reads N reads at a time. Block deferred parsing (L) reads a fixed-sized chunk of data (B bytes), assuming that no record spans a B-byte boundary. While the assumption for (L) is violated in practice for formats like FASTQ, it suggests a strategy for making formats more amenable to multithreaded parsing.
Most recents protocols related to «Streams»
Example 15
In a 15th example, reference is made to
The analysis unit holds in its memory models of these various signals that are the result of processing employing artificial intelligence as described hereinbefore. The analysis unit will process these streams using those results to produce a report on the analysis of those results.
It was found that the accelerometer is particularly suitable for measuring movements of the head whereas the gyroscope, which measures rotation movements, was found to be particularly suitable for measuring rotation movements of the mandible. Thus cerebral activation that leads to rotation of the mandible without the head changing position can be detected by the gyroscope. On the other hand, an IMM type movement will be detected by the accelerometer, in particular if the head moves on this occasion. An RMM type movement will be detected by the gyroscope, which is highly sensitive thereto.
Example 5
Lanterns are placed individually in 96-well plates and treated with 0.5 mL solution of 20% (V/V) HFIP in DCM for 1 h. Lanterns are removed and the cleaved products are concentrated using a stream of N2. Samples were dissolved for UPLC analysis and preparative HPLC.
The following compounds were prepared according to the general procedures of Part A.
Example 14
In a 14th example, reference is made to
Example 13
In a 13th example, reference is made to
Example 1
An Arab light crude oil with an API gravity of 33.0 and a sulfur content of 1.6 wt. % was fractionated in a distillation column to form a light stream and a heavy stream. Properties of the feed crude oil stream and the resulting fractions (based on their percent composition in the crude oil fractions) are given in Table 1 below.
Details of the un-hydrotreated heavy stream are shown below in Table 2, where the heavy stream is designated EX-1(A).
The same Arab light crude oil used in Example 1 was directly cracked in the same cracking reactor and under the same conditions as was used in Example 3(A), results are designated CE-1. Specifically, the temperature was 675° and the TOS was 75 seconds.
As can be seen in Table 4, the combined yields of total light olefins from the present methods are significantly higher than the yields from the comparative methods. Further, each of examples 3(A), 3(B), and 3(Combined) show significantly decreased levels of coke formation relative to the comparative example CE-1.
Example 2
The heavy stream from Example 1 was hydrotreated in a three-stage hydrotreater. The reaction conditions were: a weighted average bed temperature of 400° C., a pressure of 150 bar, a liquid hourly space velocity (LHSV) of 0.5 h−1, an Hz/oil ratio 1200:1(v/v), an oil flowrate of 300 ml/h, and an H2 flowrate of 360 L/h.
The first stage of the hydrotreater used a KFR-22 catalyst from Albemarle Co. to accomplish hydro-demetallization (HDM). The second stage of the hydrotreater used a KFR-33 catalyst from Albemarle Co. to accomplish hydro-desulfurization (HDS). The third stage of the hydrotreater used a KFR-70 catalyst from Albemarle Co. to accomplish hydro-dearomatization (HDA). The first, second, and third stages were discrete beds placed atop one another in a single reaction zone. The heavy stream flowed downward to the first stage, then to the second stage, and then to the third stage. Properties of this hydrotreated heavy stream are shown in Table 2 below and are designated EX-2.
The hydrotreated heavy stream from Example 2 was fed to the advanced cracking evaluation unit. A TOS of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 645° C. was used. Characterization of the product is given in Table 5 below.
As can be seen in Table 5, utilizing a hydrotreated heavy stream as the feed to the catalytic reactor results in higher conversion; greater yield of C2, C3, and C4 olefins; greater yield of gasoline; and significantly decreased coke formation, among other advantages.
Example 3
The respective fractions of Arab light crude were cracked at the conditions described below. A catalyst with the composition shown in Table 3 below as used in all of the reactions.
An Advanced Cracking Evaluation (ACE) unit was used to simulate a commercial FCC process. The reaction was run two times with fresh catalyst to simulate two separate FCC reaction zones in parallel.
Prior to each experiment, the catalyst is loaded into the reactor and heated to the desired reaction temperature. N2 gas is fed through the feed injector from the bottom to keep catalyst particles fluidized. Once the catalyst bed temperature reaches within ±2° C. of the reaction temperature, the reaction can begin. Feed is then injected for a predetermined time (time-on-stream (TOS)). The desired catalyst-to-feed ratio is obtained by controlling the feed pump. The gaseous product is routed to the liquid receiver, where C5+ hydrocarbons are condensed and the remaining gases are routed to the gas receiver. After catalyst stripping is over, the reactor is heated to 700° C., and nitrogen was replaced with air to regenerate the catalyst. During regeneration, the released gas is routed to a CO2 analyzer. Coke yield is calculated from the flue gas flow rate and CO2 concentration. The above process was repeated for each of Examples 3(A) and 3(B). The weight ratio of catalyst to hydrocarbons was 8.
It should be understood that time-on-stream (TOS) is directly proportional to residence time.
The light stream from Example 1 was fed to the advanced cracking evaluation unit. A time-on-stream (TOS) of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 675° C. was used.
The hydrotreated heavy stream from Example 2 was fed to the advanced cracking evaluation unit. A TOS of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 645° C. was used. Characterization is shown in both Table 4 and Table 5.
The streams of Examples 3(A) and 3(B) were combined to form a single stream. The single stream simulates the output of processing a whole crude according to the methods of the present disclosure.
Example 3(Combined) is a weighted average of Examples 3(A) and 3(B). Example 3(A) represented 53 wt. % of Example 3(Combined). Example 3(B) represented 44 wt. % of Example 3 (Combined).