Cell Death
It plays a crucial role in development, homeostasis, and disease.
There are several types of cell death, including apoptosis, necrosis, and autophagy, each with distinct mechanisms and implications.
Understanding cell death pathways is essential for research in areas such as cancer, neurodegenerative disorders, and tissue regeneration.
Optimizing cell death research through AI-driven comparative analysis can help identify the best protocols and products, advancing our knowledge and therapuetic interventions in this critical field of biology.
Most cited protocols related to «Cell Death»
Heterozygous F2 fish were randomly incrossed and upon egg collection F2 adults were fin clipped and kept as isolated breeding pairs. For each family we aimed to phenotype 12 pairs, over 3 weeks of breeding. Each clutch of eggs, which was labelled with the breeding pair ID, was sorted into three 10cm petri dishes of ~50 embryos each. Embryos were incubated at 28.5°C. Previous mutagenesis screens were used as a reference for the phenotyping 27 (link),28 (link). Those phenotypes studied were: day 1 – early patterning defects, early arrest, notochord, eye development, somites, patterning and cell death in the brain; day 2 – cardiac defects, circulation of the blood, pigment (melanocytes), eye and brain development; day 3 – cardiac defects, circulation of the blood, pigment (melanocytes), movement and hatching; day 4 – cardiac defects, movement, pigment (melanocytes) and muscle defects; day 5 – behaviour (hearing, balance, response to touch), swim bladder, pigment (melanocytes, xanthophores and iridophores), distribution of pigment, jaw, skull, axis length, body shape, notochord degeneration, digestive organs (intestinal folds, liver and pancreas), left-right patterning. In the first round of the phenotyping, all phenotypic embryos were discarded. At 5 dpf, >48 phenotypically wild-type embryos were harvested. Embryos were fixed in 100% methanol and stored at −20°C until genotyping was initiated. In the second round, F2s that were heterozygous for a suspected causal mutation were re-crossed. All phenotypes observed in those clutches of embryos were counted, documented and photographed. Phenotypic embryos were fixed in 100% methanol and at 5 dpf 48 phenotypically wild-type embryos were also collected. The first round genotyping results were assessed using a Chi-squared test with a p-value cut off of <0.05. If the number of homozygous embryos was above the cut-off (i.e. in the expected 25% ratio), the allele was deemed to not cause a phenotype within the first 5 dpf. If the number of homozygous embryos was below the cut-off, the allele was carried forward into the second round of phenotyping. In the second round, we aimed to genotype 48 embryos for each phenotype, ideally from multiple clutches. An allele was documented as causing a phenotype if the phenotypic embryos were homozygous for the allele. We allowed up to 10% of embryos for a given phenotype to not be homozygous, to account for errors in egg collection. Such alleles were outcrossed for further genotyping with F4 embryos at a later date. Where possible, alleles were also submitted to complementation tests.
Free intracellular radicals were detected with dihydrorhodamine 123, dichlorodihydrofluorescein diacetate (dichlorofluorescin diacetate), or dihydroethidium (hydroethidine;
Free spin trap reagents N-tert-butyl-α−phenylnitrone (PBN;
To determine frequencies of morphological phenotypes (TUNEL, Annexin V, DAPI, dihydrorhodamine 123), at least 300 cells of three independent experiments were evaluated.
Most recents protocols related to «Cell Death»
Example 7
The MTT Cell Proliferation assay determines cell survival following apple stem cell extract treatment. The purpose was to evaluate the potential anti-tumor activity of apple stem cell extracts as well as to evaluate the dose-dependent cell cytotoxicity.
Principle: Treated cells are exposed to 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). MTT enters living cells and passes into the mitochondria where it is reduced by mitochondrial succinate dehydrogenase to an insoluble, colored (dark purple) formazan product. The cells are then solubilized with DMSO and the released, solubilized formazan is measured spectrophotometrically. The MTT assay measures cell viability based on the generation of reducing equivalents. Reduction of MTT only occurs in metabolically active cells, so the level of activity is a measure of the viability of the cells. The percentage cell viability is calculated against untreated cells.
Method: A549 and NCI-H520 lung cancer cell lines and L132 lung epithelial cell line were used to determine the plant stem cell treatment tumor-specific cytotoxicity. The cell lines were maintained in Minimal Essential Media supplemented with 10% FBS, penicillin (100 U/ml) and streptomycin (100 μg/ml) in a 5% CO2 at 37 Celsius. Cells were seeded at 5×103 cells/well in 96-well plates and incubated for 48 hours. Triplicates of eight concentrations of the apple stem cell extract were added to the media and cells were incubated for 24 hours. This was followed by removal of media and subsequent washing with the phosphate saline solution. Cell proliferation was measured using the MTT Cell Proliferation Kit I (Boehringer Mannheim, Indianapolis, IN) New medium containing 50 μl of MTT solution (5 mg/ml) was added to each well and cultures were incubated a further 4 hours. Following this incubation, DMSO was added and the cell viability was determined by the absorbance at 570 nm by a microplate reader.
In order to determine the effectiveness of apple stem cell extracts as an anti-tumor biological agent, an MTT assay was carried out and IC50 values were calculated. IC50 is the half maximal inhibitory function concentration of a drug or compound required to inhibit a biological process. The measured process is cell death.
Results: ASC-Treated Human Lung Adenocarcinoma Cell Line A549.
Results: ASC-Treated Human Squamous Carcinoma Cell Line NCI-H520.
Results: ASC-treated Lung Epithelial Cell Line L132.
Summary Results: Cytotoxicity of Apple Stem Cell Extracts.
Apple stem cell extracts killed lung cancer cells lines A549 and NCI-H520 at relatively low doses: IC50s were 12.58 and 10.21 μg/ml respectively as compared to 127.46 μg/ml for the lung epithelial cell line L132. Near complete anti-tumor activity was seen at a dose of 250 μg/ml in both the lung cancer cell lines. This same dose spared more than one half of the L132 cells. See Tables 7-10. The data revealed that apple stem cell extract is cytotoxic to lung cancer cells while sparing lung epithelial cells.
Example 9
The experiment of Example 7 was repeated substituting other plant materials for ASC. Plant stem cell materials included Dandelion Root Extract (DRE), Aloe Vera Juice (AVJ), Apple Fiber Powder (AFP), Ginkgo Leaf Extract (GLE), Lingonberry Stem Cells (LSC), Orchid Stem Cells (OSC) as described in Examples 1 and 2. The concentrations of plant materials used were nominally 250, 100, 50, 25, 6.25, 3.125, 1.562, and 0.781 μg/mL. These materials were tested only for cells the human lung epithelial cell line L132 (as a proxy for normal epithelial cells) and for cells of the human lung adenocarcinoma cell line A549 (as a proxy for lung cancer cells).
A549 cells lung cancer cell line cytotoxicity results for each of the treatment materials.
DRE-Treated Lung Cancer Cell Line A549 Cells.
AVJ-Treated Lung Cancer Cell line A549 Cells.
AFP-Treated Lung Cancer Cell line A549 Cells.
GLE-treated Lung Cancer Cell line A549 Cells.
LSC-treated lung cancer cell lines A549 cells.
OSC-treated Lung Cancer Cell line A549 Cells.
L132 cells (“normal” lung epithelial cell line) cytotoxicity results for each of the treatment materials.
DRE-Treated Lung Epithelial Cell Line L132 cells.
AVJ-Treated Lung Epithelial Cell Line L132 cells.
AFP-Treated Lung Epithelial Cell Line L132 cells.
GLE-Treated Lung Epithelial Cell Line L132 cells.
LSC-Treated Lung Epithelial Cell Line L132 cells.
OSC-Treated Lung Epithelial Cell Line L132 cells.
Calculated values.
Example 2
In the following experiments, a mouse model of RVO, which induces reproducible retinal edema was used. RVO is the model that was used for testing anti-VEGF therapies for DME. Brown et al., Ophthalmology 117, 1124-1133 el 121 (2010); and Campochiaro et al., Ophthalmology 117, 1102-1112 e1101 (2010). I n this model, Rose Bengal, a photoactivatable dye, is injected into the tail veins of adult C57B16 mice and photoactivated by laser of retinal veins around the optic nerve head. A clot is formed and edema or increased retinal thickness develops rapidly. Inflammation, also seen in diabetes, also develops.
Fluorescein leakage and maximal retinal edema, measured by fluorescein angiography and optical coherence tomography (OCT), respectively, using the Phoenix Micron IV, is observed 24 h after RVO. Retinal edema is maintained over the first 3 days RVO. By day 4 the edema decreases and the retina subsequently thins out. In addition to edema formation there is evidence of cell death in the photoreceptor cell layer by day 2 after RVO.
In this example, mice were anesthetized with intra-peritoneal (IP) injection of ketamine and xylazine. One drop of 0.5% alcaine was added to the eye as topical anesthetic. The retina was imaged with the Phoenix Micron IV to choose veins for laser ablation using the Phoenix Micron IV image guided laser. One to four veins around the optic nerve head were ablated by delivering a laser pulse (power 50 mW, spot size 50 μm, duration 3 seconds) to each vein.
Example 4
The expression of RasCQ62L in pten− cells maintained for an additional 16-28 hours resulted in cells that underwent a catastrophic fragmentation and death (
Example 5
TUNEL staining is a marker of cell death. RVO induces TUNEL staining by 24 h in the INL. Retinas were harvested at 48 h from mice treated with Penl-XBIR3 or untreated mice, then processed for immunohistochemistry. Analysis of samples showed that TUNEL positive cells were decreased by Penl-XBIR3 eyedrops and that the eyedrops maintained INL thickness (
Example 9
The ORF encoding the micropeptide of SEQ ID NO: 3 was cloned in frame with the HA epitope tag in the pMSCV retroviral vector. Western blot and qPCR analysis demonstrated that the micropeptide of SEQ ID NO: 3 was successfully expressed after retroviral transduction, and that the protein product was stable (
Importantly, overexpression of the micropeptide of SEQ ID NO: 3 induces massive cell death in cancer cell lines (A549, human lung cancer and HCT116, human colorectal cancer) (
Top products related to «Cell Death»
More about "Cell Death"
This programmed destruction of cells can take various forms, including apoptosis, necrosis, and autophagy, each with distinct mechanisms and implications.
Understanding cell death pathways is essential for research in areas such as cancer, neurodegenerative disorders, and tissue regeneration.
Optimizing cell death research is crucial, and AI-driven comparative analysis can help identify the best protocols and products.
Tools like the In Situ Cell Death Detection Kit, FACSCalibur flow cytometer, Cell Death Detection ELISAPLUS kit, and Propidium iodide can be used to detect and analyze cell death.
The Cell Death Detection ELISA kit and FACSCanto II are other valuable tools in this field.
By utilizing the power of AI-driven comparisons, researchers can explore a wide range of cell death-related protocols and products from the literature, pre-prints, and patents.
This allows them to identify the most effective and efficient approaches, advancing their knowledge and therapeutic interventions in this critical area of biology.
Synonyms and related terms for cell death include programmed cell death, apoptosis, necrosis, autophagy, cell demise, and cell destruction.
Abbreviations like PCD (programmed cell death) and PtdIns (phosphatidylinositol) are also commonly used.
Key subtopics within cell death research include the molecular mechanisms of cell death, the role of cell death in development and homeostasis, the dysregulation of cell death in disease, and the therapeutic targeting of cell death pathways.
Unlocking the full potential of cell death research through AI-driven comparative analysis is essential for advancing our understanding and developing effective therapies in fields like cancer, neurodegenerative disorders, and tissue regeneration.
Explore the capabilities of tools like the Fluorescence microscope and the Cell Death Detection Kit to take your cell death research to the next level.