The largest database of trusted experimental protocols
> Physiology > Cell Function > Cell Proliferation

Cell Proliferation

Cell Proliferation refers to the process by which cells divide and increase in number.
This biological phenomenon is essential for growth, development, tissue repair, and the maintenance of homeostasis in multicellular organisms.
Factors that regulate cell proliferation include growth factors, cytokines, cell-cell and cell-matrix interactions, and the cell cycle machinery.
Dysregulation of cell proliferation can lead to pathological conditions such as cancer, autoimmune disorders, and fibrotic diseases.
Researchers studying cell proliferation utilize a variety of techniques, including cell culture assays, flow cytometry, and molecular biology methods.
Optimizing experimental protocols and leveraging innovative technologies, such as AI-driven comparisons of proliferation data, can boost research productivity and reproducibility in this important field of study.

Most cited protocols related to «Cell Proliferation»

The Cell Titer-Glo Luminescent Cell Viability Assay (Promega) was used according to the manufacturer’s instructions to measure cell proliferation. The cells were transfected with AMOs and seeded in triplicate in 96-well plates at a density of 1 × 104 cells per well. Cells were incubated in media containing 1% FBS for 3 days and proliferation was measured every 24 h.
Full text: Click here
Publication 2020
Cell Proliferation Cells Luminescent Measurements Promega
EGFR wild type and mutant NSCLC, Ba/F3 cells and NIH-3T3 cells were cultured as previously described10 (link). The PC9GR4 cells were generated as previously described and verified to contain EGFR delE746_A750/T790M by direct sequencing21 (link). Cell proliferation and growth assays were performed using the MTS assay as previously described26 (link). Site directed mutagenesis was performed using the Quick Change Site-Directed Mutagenesis kit (Stratagene; La Jolla, CA) according to the manufacturer's instructions.
Publication 2009
Biological Assay Cell Proliferation Cells EGFR protein, human Mutagenesis, Site-Directed NIH 3T3 Cells Non-Small Cell Lung Carcinoma
Subretinal injections (1 µL) were performed using a Pico-Injector (PLI-100, Harvard Apparatus). Plasmids were transfection in vivo using 10% Neuroporter (Genlantis). Immunolabeling was performed using antibodies against dsRNA (clone J2, English & Scientific Consulting), DICER1 (Santa Cruz Biotechnology), zonula occludens-1 (Invitrogen), Cre recombinase (EMD4Biosciences), or cleaved caspase-3 (Cell Signaling). dsRNA was isolated by immunoprecipitating homogenized tissue lysates with 40 µg of J2 for 16 h at 4 °C. Purified dsRNA was ligated to an anchor primer and purified by MinElute Gel extraction columns (Qiagen). Ligated dsRNA was denatured, reverse transcribed, and amplified by PCR. Amplified cDNA products were cloned into PCRII TOPO vector (Invitrogen) and sequenced. Homology to Alu consensus sequences was determined using CENSOR. Cell viability was assessed using CellTiter 96 AQueous One Solution Cell Proliferation Assay (Promega). Total RNA (1 µg) was reverse transcribed using qScript cDNA SuperMix (Quanta Biosciences) and amplified by real-time quantitative PCR (Applied Biosystems 7900 HT) with Power SYBR green Master Mix. Relative expressions were determined by the 2−ΔΔCt method. miRNA abundance was quantified using All-in-One™ miRNA qRT-PCR Detection Kit (GeneCopoeia).
Full Methods and any associated references are available in the online version of the paper at www.nature.com/nature.
Publication 2011
Antibodies Biological Assay Caspase 3 Cell Proliferation Cell Survival Cloning Vectors Cre recombinase DICER1 protein, human DNA, Complementary Homologous Sequences MicroRNAs Oligonucleotide Primers Plasmids Real-Time Polymerase Chain Reaction RNA, Double-Stranded SYBR Green I Tight Junctions Tissues Topotecan Transfection
The HeLa and A431 cell lines were maintained in Eagle's Minimum Essential Medium supplemented with 10% FBS and 1% antibiotics (100 U/mL penicillin, 100 µg/mL streptomycin) and 250 µg/mL fungizone. The cells were grown at 37°C in a humidified incubator set at 5% CO2. Cells were subcultured by treating them with trypsin-EDTA (0.25% trypsin containing 0.01% EDTA) for 10 minutes.
Cytotoxicity was measured using the XTT cell proliferation Kit II and MPBA. The method described by Zheng et al. [8 (link)] was used to perform the assay. Both cell lines were seeded in a 96-well microtitre plate at a concentration of 1 × 105 cells/mL. Cells were allowed to attach for 24 hrs at 37°C and 5% CO2. The cells were exposed to the positive drug control Actinomycin D (Sigma-Aldrich, South Africa) with concentrations ranging between 0.5 µg/mL and 0.002 µg/mL. The microtitre plate was incubated for further 72 hrs and thereafter 50 µL XTT was added to a final concentration of 0.3 mg/mL to one set of plates and 20 µL PrestoBlue was added to another set of plates. The plates were incubated for further 2 hrs where after the absorbance of the colour complex was read at 490 nm with a reference wavelength set at 690 nm for XTT and at 570 nm with a reference wavelength set at 600 nm for PrestoBlue, using a BIO-TEK Power-Wave XS multiwell plate reader.
Full text: Click here
Publication 2013
Antibiotics Biological Assay Cell Lines Cell Proliferation Cells Cytotoxin Dactinomycin Edetic Acid Fungizone HeLa Cells Penicillins Streptomycin Trypsin
Experiments were carried out using the xCELLigence RTCA DP instrument (Roche Diagnostics GmbH, Mannheim, Germany) which was placed in a humidified incubator at 37°C and 5% CO2.
Cell proliferation and cytotoxicity experiments were performed using modified 16-well plates (E-plate, Roche Diagnostics GmbH, Mannheim, Germany). Microelectrodes were attached at the bottom of the wells for impedance-based detection of attachment, spreading and proliferation of the cells. Initially, 100 µL of cell-free growth medium (10% FBS) was added to the wells. After leaving the devices at room temperature for 30 min, the background impedance for each well was measured. Cells were harvested from exponential phase cultures by a standardized detachment procedure using 0.05% Trypsin-EDTA (Invitrogen NV/SA, Merelbeke, Belgium) and counted automatically with a Scepter 2.0 device (Merck Millipore SA/NV, Overijse, Belgium), Fifty µL of the cell suspension was seeded into the wells (20, 40, 80, 100, 200, 400 and 800 cells/well for proliferation, 1000 cells/well for cytotoxicity experiments). The cell concentrations of 20, 100, 200 and 400 cells/well were considered for correlation with the SRB method described below. After leaving the plates at room temperature for 30 min to allow cell attachment, in accordance with the manufacturer's guidelines, they were locked in the RTCA DP device in the incubator and the impedance value of each well was automatically monitored by the xCELLigence system and expressed as a Cell Index value (CI). Water was added to the space surrounding the wells of the E-plate to avoid interference from evaporation. For proliferation assays, the cells were incubated during ten days in growth medium (10% FBS) and CI was monitored every 15 min during the first six hours, and every hour for the rest of the period. Two replicates of each cell concentration were used in each test. For cytotoxicity experiments, CI of each well was automatically monitored with the xCELLigence system every 15 min during the overnight recovery period. Twenty-four hours after cell seeding, cells were treated during a period of 72 hours with paclitaxel (0, 1, 2, 5, 10, 20, 50 and 100 nM) dissolved in phosphate buffered saline (PBS). PBS alone was added to control wells. Each concentration was tested in duplicate within the same experiment. CI was monitored every 15 min during the experiment. Three days after the start of treatment with paclitaxel, CI measurement was ended.
Full text: Click here
Publication 2012
Biological Assay Cell-Matrix Junction Cell Proliferation Cells Culture Media Cytotoxin Diagnosis Edetic Acid Medical Devices Microelectrodes Paclitaxel Phosphates Ribavirin Saline Solution Trypsin

Most recents protocols related to «Cell Proliferation»

Not available on PMC !

Example 7

The MTT Cell Proliferation assay determines cell survival following apple stem cell extract treatment. The purpose was to evaluate the potential anti-tumor activity of apple stem cell extracts as well as to evaluate the dose-dependent cell cytotoxicity.

Principle: Treated cells are exposed to 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). MTT enters living cells and passes into the mitochondria where it is reduced by mitochondrial succinate dehydrogenase to an insoluble, colored (dark purple) formazan product. The cells are then solubilized with DMSO and the released, solubilized formazan is measured spectrophotometrically. The MTT assay measures cell viability based on the generation of reducing equivalents. Reduction of MTT only occurs in metabolically active cells, so the level of activity is a measure of the viability of the cells. The percentage cell viability is calculated against untreated cells.

Method: A549 and NCI-H520 lung cancer cell lines and L132 lung epithelial cell line were used to determine the plant stem cell treatment tumor-specific cytotoxicity. The cell lines were maintained in Minimal Essential Media supplemented with 10% FBS, penicillin (100 U/ml) and streptomycin (100 μg/ml) in a 5% CO2 at 37 Celsius. Cells were seeded at 5×103 cells/well in 96-well plates and incubated for 48 hours. Triplicates of eight concentrations of the apple stem cell extract were added to the media and cells were incubated for 24 hours. This was followed by removal of media and subsequent washing with the phosphate saline solution. Cell proliferation was measured using the MTT Cell Proliferation Kit I (Boehringer Mannheim, Indianapolis, IN) New medium containing 50 μl of MTT solution (5 mg/ml) was added to each well and cultures were incubated a further 4 hours. Following this incubation, DMSO was added and the cell viability was determined by the absorbance at 570 nm by a microplate reader.

In order to determine the effectiveness of apple stem cell extracts as an anti-tumor biological agent, an MTT assay was carried out and IC50 values were calculated. IC50 is the half maximal inhibitory function concentration of a drug or compound required to inhibit a biological process. The measured process is cell death.

Results: ASC-Treated Human Lung Adenocarcinoma Cell Line A549.

TABLE 7
Results of cytotoxicity of apple stem cell extract on lung cancer cell
line A549 as measured by MTT assay (performed in triplicate).
Values of replicates are % of cell death.
Concentration*replicatereplicatereplicateMean of% Live
(μg/ml)123replicatesSDSEMCells
25093.1890.8690.3491.461.510.878.54
10086.8885.1885.6985.920.870.5014.08
5080.5879.4981.0480.370.800.4619.63
2574.2873.8176.3974.831.380.7925.17
12.567.9868.1371.7569.282.131.2330.72
6.2561.6762.4567.1063.742.931.6936.26
3.12555.3756.7762.4558.203.752.1641.80
1.56249.0751.0857.8052.654.572.6447.35
0.78142.7745.4053.1547.115.403.1252.89

Results: ASC-Treated Human Squamous Carcinoma Cell Line NCI-H520.

TABLE 8
Results of cytotoxicity of apple stem cell extract on lung cancer
cell line NCI-H520 measured by MTT assay (performed in triplicate).
Values of replicates are % of cell death.
Concen-%
tration*replicatereplicatereplicateMean ofLive
(μg/ml)123replicatesSDSEMcell
25088.2889.2987.7388.430.790.4611.57
10078.1379.1978.1378.480.610.3521.52
5067.9869.0968.5468.540.560.3231.46
2557.8358.9958.9458.590.660.3841.41
12.547.6848.8949.3448.640.860.5051.36
6.2537.5338.7939.7538.691.110.6461.31
3.12527.3728.6930.1528.741.390.8071.26
1.56217.2218.5920.5618.791.680.9781.21
0.781 7.07 8.4810.96 8.841.971.1491.16

Results: ASC-treated Lung Epithelial Cell Line L132.

TABLE 9
Results of cytotoxicity of apple stem cell extract on
lung epithelial cell line L132 as measured by MTT assay
(performed in triplicate). Values of replicates are % of cell death.
Concen-rep-rep-rep-Mean%
tration*licatelicatelicateofLive
(μg/ml)123replicatesSDSEMcell
25039.5142.5244.0342.022.301.3357.98
10032.9334.4433.6933.690.750.4466.31
5030.6028.9430.5230.020.940.5469.98
2527.9627.8127.1327.630.440.2572.37
12.525.6225.5525.4025.520.120.0774.48
6.2523.1320.8718.6120.872.261.3179.13
3.12513.3411.0811.8312.081.150.6687.92
1.562 6.56 7.31 9.57 7.811.570.9192.19
0.781 8.06 4.30 3.54 5.302.421.4094.70

Summary Results: Cytotoxicity of Apple Stem Cell Extracts.

TABLE 10
IC50 values of the apple stem cell extracts on the on the target
cell lines as determined by MTT assay.
Target Cell
LineIC50
A54912.58
NCI-H52010.21
L132127.46

Apple stem cell extracts killed lung cancer cells lines A549 and NCI-H520 at relatively low doses: IC50s were 12.58 and 10.21 μg/ml respectively as compared to 127.46 μg/ml for the lung epithelial cell line L132. Near complete anti-tumor activity was seen at a dose of 250 μg/ml in both the lung cancer cell lines. This same dose spared more than one half of the L132 cells. See Tables 7-10. The data revealed that apple stem cell extract is cytotoxic to lung cancer cells while sparing lung epithelial cells. FIG. 6 shows a graphical representation of cytotoxicity activity of apple stem cell extracts on lung tumor cell lines A549, NCIH520 and on L132 lung epithelial cell line (marked “Normal”). The γ-axis is the mean % of cells killed by the indicated treatment compared to unexposed cells. The difference in cytotoxicity levels was statistically significant at p≤05.

Example 9

The experiment of Example 7 was repeated substituting other plant materials for ASC. Plant stem cell materials included Dandelion Root Extract (DRE), Aloe Vera Juice (AVJ), Apple Fiber Powder (AFP), Ginkgo Leaf Extract (GLE), Lingonberry Stem Cells (LSC), Orchid Stem Cells (OSC) as described in Examples 1 and 2. The concentrations of plant materials used were nominally 250, 100, 50, 25, 6.25, 3.125, 1.562, and 0.781 μg/mL. These materials were tested only for cells the human lung epithelial cell line L132 (as a proxy for normal epithelial cells) and for cells of the human lung adenocarcinoma cell line A549 (as a proxy for lung cancer cells).

A549 cells lung cancer cell line cytotoxicity results for each of the treatment materials.

DRE-Treated Lung Cancer Cell Line A549 Cells.

TABLE 11
Triplicate results of cell death of DRE-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-DRE-Live
treated A549% of cell deathMeanSDSEMcell
25080.4376.4074.8477.232.891.6722.77
10067.6075.2663.7768.885.853.3831.12
5065.3262.9459.9462.732.701.5637.27
2556.8357.9748.1454.315.383.1145.69
6.2555.5949.6949.1751.483.572.0648.52
3.12551.7648.4545.3448.523.211.8551.48
1.56243.6944.0036.0241.244.522.6158.76
0.78137.4726.1919.5727.749.055.2372.26

AVJ-Treated Lung Cancer Cell line A549 Cells.

TABLE 12
Triplicate results of cell death of AVJ-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-AVJ-treatedLive
A549% of cell deathMeanSDSEMcell
25076.8178.1675.8876.951.140.6623.05
10076.4075.2673.7175.121.350.7824.88
5065.3266.1559.9463.803.371.9536.20
2550.1048.4556.6351.734.322.5048.27
6.2547.5246.3846.1746.690.720.4253.31
3.12539.8638.6143.7940.752.701.5659.25
1.56232.4019.7730.5427.576.823.9472.43
0.78120.5015.6332.1922.778.514.9277.23

AFP-Treated Lung Cancer Cell line A549 Cells.

TABLE 13
Triplicate results of cell death of AFP-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-AFP-treatedLive
A549% of cell deathMeanSDSEMcell
25086.1387.9986.6586.920.960.5613.08
10079.5081.0682.0980.881.300.7519.12
5073.6072.4671.3372.461.140.6627.54
2568.0167.7066.9867.560.530.3132.44
6.2560.8762.1160.7761.250.750.4338.75
3.12549.4851.7650.7250.661.140.6649.34
1.56240.0641.7247.0042.933.622.0957.07
0.78139.2337.7836.8537.961.200.6962.04

GLE-treated Lung Cancer Cell line A549 Cells.

TABLE 14
Triplicate results of cell death of GLE-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration%
(μg/mL)-GLE-treatedLive
A549% of cell deathMeanSDSEMcell
25088.4291.4990.4490.121.560.909.88
10084.3983.7783.1683.770.610.3516.23
5079.4781.5876.7579.272.421.4020.73
2573.6072.5471.4072.511.100.6327.49
6.2562.8963.6859.9162.161.991.1537.84
3.12550.1854.4751.8452.162.171.2547.84
1.56246.9344.3043.3344.851.861.0755.15
0.78139.5639.3940.9639.970.870.5060.03

LSC-treated lung cancer cell lines A549 cells.

TABLE 15
Triplicate results of cell death of LSC-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration
(μg/mL)% Live
LSC treated A549% of cell deathMeanSDSEMcell
25077.5478.8578.2078.200.650.3821.80
10077.1476.0476.5976.590.550.3223.41
5066.4268.5266.8267.251.120.6532.75
2559.8067.2264.1663.733.732.1536.27
6.2550.5348.8248.0749.141.260.7350.86
3.12541.1443.6042.7242.491.240.7257.51
1.56239.4739.7440.6139.940.600.3460.06
0.78138.5531.8336.7935.723.482.0164.28

OSC-treated Lung Cancer Cell line A549 Cells.

TABLE 16
Triplicate results of cell death of OSC-treated
A549 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration
(μg/mL)% Live
OSC-treated A549% of cell deathMeanSDSEMcell
25070.8465.5771.4969.303.251.8730.70
10048.8150.9157.2852.334.412.5547.67
5046.5949.6053.3349.843.381.9550.16
2538.7740.8136.5838.722.111.2261.28
6.2535.7440.7941.0539.193.001.7360.81
3.12534.5533.6837.0235.081.731.0064.92
1.56233.8633.4427.6331.643.482.0168.36
0.78121.3220.0034.8225.388.214.7474.62

L132 cells (“normal” lung epithelial cell line) cytotoxicity results for each of the treatment materials.

DRE-Treated Lung Epithelial Cell Line L132 cells.

TABLE 17
Triplicate results of cell death of DRE-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates.
Concentration% of %
(μg/mL)cellLive
DRE-treated L132deathMeanSDSEMcell
25086.6686.6186.6686.640.030.0213.36
10076.2977.3976.8476.840.550.3223.16
5065.9268.1767.0167.031.130.6532.97
2555.5458.9557.1957.231.700.9842.77
6.2545.1749.7347.3747.422.281.3252.58
3.12534.8040.5037.5437.612.851.6562.39
1.56224.4231.2827.7227.813.431.9872.19
0.78114.0522.0617.8918.004.012.3182.00

AVJ-Treated Lung Epithelial Cell Line L132 cells.

TABLE 18
Triplicate results of cell death of AVJ-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration % of %
(μg/mL)cellLive
AVJ-treated L132deathMeanSDSEMcell
25057.0355.9353.6255.531.741.0044.47
10050.9949.7847.0449.272.031.1750.73
5044.9543.6340.4543.012.311.3456.99
2538.9137.4933.8636.752.601.5063.25
6.2532.8831.3427.2830.502.891.6769.50
3.12526.8425.1920.6924.243.181.8475.76
1.56220.8019.0514.1117.983.472.0082.02
0.78114.7612.90 7.5211.733.762.1788.27

AFP-Treated Lung Epithelial Cell Line L132 cells.

TABLE 19
Triplicate results of cell death of AFP-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration
(μg/mL)% Live
AFP-treated L132% of cell deathMeanSDSEMcell
25056.1555.4357.1956.260.880.5143.74
10049.9548.2447.6448.611.200.6951.39
5043.7441.0538.0940.962.831.6359.04
2537.5433.8628.5433.324.532.6166.68
6.2531.3426.6718.9925.676.243.6074.33
3.12525.1419.489.4418.027.954.5981.98
1.56218.9412.2910.8714.034.312.4985.97
0.78112.73 5.10 6.81 8.214.002.3191.79

GLE-Treated Lung Epithelial Cell Line L132 cells.

TABLE 20
Triplicate results of cell death of GLE-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration
(μg/mL)% Live
GLE-treated L132% of cell deathMeanSDSEMcell
25084.4283.2083.0883.570.740.4316.43
10080.0579.2978.5979.310.730.4220.69
5072.7571.5974.1072.811.260.7227.19
2580.0581.8679.9980.631.060.6119.37
6.2568.2670.1368.2668.881.080.6231.12
3.12560.6263.0760.6261.441.410.8238.56
1.56248.0748.7748.8348.560.420.2451.44
0.78146.2745.5746.6746.170.560.3253.83

LSC-Treated Lung Epithelial Cell Line L132 cells.

TABLE 21
Triplicate results of cell death of LSC-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration
(μg/mL)% Live
LSC-treated L132% of cell deathMeanSDSEMcell
25086.4185.8285.7686.000.350.2014.00
10081.2181.2779.9980.820.720.4219.18
5075.9674.7473.5174.741.230.7125.26
2574.7472.7571.4772.991.650.9527.01
6.2570.1368.3268.2668.901.060.6131.10
3.12554.0358.0553.4455.172.511.4544.83
1.56253.9751.9851.9852.641.150.6647.36
0.78146.7945.6244.9245.78 0.940.54 54.22

OSC-Treated Lung Epithelial Cell Line L132 cells.

TABLE 22
Triplicate results of cell death of OSC-treated
L132 cells measured by MTT assay.
Percentage of live cells calculated as 100% − Mean of triplicates
AFP-treated lung epithelial cell line L132 cells.
Concentration %
(μg/mL)Live
OSC-treated L132% of cell deathMeanSDSEMcell
25061.8462.3760.4461.551.000.5738.45
10054.1453.4452.1053.231.040.6046.77
5042.9442.3040.3241.851.370.7958.15
2535.9434.4833.3134.581.320.7665.42
6.2533.9632.6732.0332.890.980.5767.11
3.12527.4826.2026.7226.800.650.3773.20
1.562 9.80 7.29 7.35 8.151.430.8391.85
0.781 7.29 8.98 8.05 8.110.850.4991.89

Calculated values.

TABLE 23
Calculated IC50 doses (ug/mL) and therapeutic ratios
(IC50 for L132 cells/IC50 for A549 cells) for each
treatment material. Values greater than one indicate
that a material would be more selective in killing cancer
cells than normal cells. ASC results imported from
Example 8. These studies indicate that at least
some of the materials may be effective anti-cancer agents.
ASC has outstanding selectivity compared to other materials.
ASCDREAVJAFPGLELSCOSC
A549 12.589.82211.4811.9811.1 13.733.9 
IC50
L132 127.4656.88 62.6682.6577.6369.26715.38
IC50
Ther.10.15.8 5.56.97.0 0.70.5
Ratio

Full text: Click here
Patent 2024
14-3-3 Proteins 43-63 61-26 A549 Cells Action Potentials Adenocarcinoma of Lung Aloe Aloe vera Antineoplastic Agents Biological Assay Biological Factors Biological Processes Bromides Cardiac Arrest Cell Death Cell Extracts Cell Lines Cell Proliferation Cells Cell Survival Cytotoxin diphenyl DNA Replication Epistropheus Epithelial Cells Fibrosis Formazans Genetic Selection Ginkgo biloba Ginkgo biloba extract Homo sapiens Lingonberry Lung Lung Cancer Lung Neoplasms Malignant Neoplasms Mitochondria Mitochondrial Inheritance Neoplasms Neoplastic Stem Cells Oral Cavity PEG SD-01 Penicillins Pharmaceutical Preparations Phosphates Plant Cells Plant Leaves Plant Roots Plants Powder Psychological Inhibition Saline Solution SD 31 SD 62 SEM-76 Squamous Cell Carcinoma Stem, Plant Stem Cells Streptomycin Succinate Dehydrogenase Sulfoxide, Dimethyl Taraxacum Tetrazolium Salts

Example 7

Impact of IL-2 signalling on Teff responses is characterised in a T cell activation assay, in which intracellular granzyme B (GrB) upregulation and proliferation are examined. Previously frozen primary human Pan T cells (Stemcell Technologies) are labelled with eFluor450 cell proliferation dye (Invitrogen) according to manufacturer's recommendation, and added to 96-U-bottom well plates at 1×105 cells/well in RPMI 1640 (Life Technologies) containing 10% FBS (Sigma), 2 mM L-Glutamine (Life Technologies) and 10,000 U/ml Pen-Strep (Sigma). The cells are then treated with 10 μg/ml anti-CD25 antibodies or control antibodies followed by Human T-Activator CD3/CD28 (20:1 cell to bead ratio; Gibco) and incubated for 72 hrs in a 37° C., 5% CO2 humidified incubator. To assess T cell activation, cells are stained with the eBioscience Fixable Viability Dye efluor780 (Invitrogen), followed by fluorochrome labelled antibodies for surface T cell markers (CD3-PerCP-Cy5.5 clone UCHT1 Biolegend, CD4-BV510 clone SK3 BD Bioscience, CD8-Alexa Fluor 700 clone RPA-T8 Invitrogen, CD45RA-PE-Cy7 clone HI100 Invitrogen, CD25-BUV737 clone 2A3 BD Bioscience) and then fixed and permeabilized with the eBioscience™ Foxp3/Transcription Factor Staining Buffer Set (Invitrogen) before staining for intracellular GrB and intranuclear FoxP3 (Granzyme B-PE clone GB11 BD Bioscience, FoxP3-APC clone 236A/E7). Samples are acquired on the Fortessa LSR X20 Flow Cytometer (BD Bioscience) and analysed using the BD FACSDIVA software. Doublets are excluded using FCS-H versus FCS-A, and lymphocytes defined using SSC-A versus FCS-A parameters. CD4+ and CD8+ T cell subsets gated from the live CD3+ lymphocytes are assessed using a GrB-PE-A versus proliferation eFluor450-A plot. Results are presented as percentage of proliferating GrB positive cells from the whole CD4+ T cell population. Graphs and statistical analysis is performed using GraphPad Prism v7. (results not shown)

Full text: Click here
Patent 2024
Anti-Antibodies Antibodies Biological Assay Buffers CD4 Positive T Lymphocytes Cell Proliferation Cells Clone Cells CY5.5 cyanine dye Eragrostis Fluorescent Dyes Freezing Glutamine GZMB protein, human Homo sapiens IL2RA protein, human Lymphocyte prisma Protoplasm Stem Cells Streptococcal Infections T-Lymphocyte T-Lymphocyte Subsets Transcriptional Activation Transcription Factor

Example 8

Cell adhesion was also evaluated by means of in vitro scratch wound-healing assay. HDPSCs cells were analyzed by difference in staining with phalloidin (cell nucleus) and DAPI to visualize actin cytoskeleton.

Cell adhesion results showed excellent interaction and adhesion between neighboring cells in the presence of bioceramic composition. The Bioceramic composition sealer (CB5) and Bioceramic composition repair (CB6), showed a gradual increase in growth over time, an extended morphology and a high content of F-Actin (cell microfilamen), reaching confluence after 72 hours of culture.

The analysis of cell proliferation (via cell viability study), apoptosis, cell adhesion and morphology (via cell adhesion study) and migration (via cell migration study) showed very positive results, indicating that the proposed bioceramic composition induces the odonto/osteogenic mineralization and differentiation process in the presence of tooth-specific human stem cells (hDPSCs pulp). While a market resin sealer was also used in the comparative studies, however, all results were not satisfactory for this product.

Full text: Click here
Patent 2024
Apoptosis Biological Assay Cell Adhesion Cell Nucleus Cell Proliferation Cell Survival DAPI Dental Pulp Differentiations, Cell F-Actin Homo sapiens Microfilaments Migration, Cell Osteogenesis Phalloidine Physiologic Calcification Resins, Plant Stem, Plant Stem Cells Tooth

Example 3

Lung cancer cell line A549 and squamous cell carcinoma cell line H10 expressing inducible SEQ ID NO: 1-HA vector were established as described previously. SEQ ID NO: 1 expression was detected by qPCR (FIG. 7A) and by Western Blot (FIG. 7B). Immunostaining using a custom-made antibody against SEQ ID NO: 1 reveals a predominant cytoplasmic localization with a filamentous pattern. This data demonstrates that the micropeptide can also be expressed and detectable in these cell lines.

To evaluate the effects of SEQ ID NO: 1 on proliferation, A549 and H10 cells transduced with SEQ ID NO: 1-HA vector or control vector were monitored for 14 days. Growth curves show that cells overexpressing micropeptide SEQ ID NO: 1 have a consistently lower growth rate compared to the control (FIG. 8A). This effect in proliferation is also accompanied by an increase in cells arrested in G1 phase (FIG. 8B). Collectively with the data shown before in the pancreatic cell line BxPC-3, there is a strong evidence of the role of the micropeptide of SEQ ID NO: 1 in decreasing cell proliferation in several cancer types (pancreas, lung and squamous cell carcinoma).

Full text: Click here
Patent 2024
Adenocarcinoma of Lung Cell Cycle Arrest Cell Lines Cell Proliferation Cells Cloning Vectors Cytoplasmic Filaments G1 Phase Immunoglobulins Lung Lung Cancer Malignant Neoplasms Pancreas Squamous Cell Carcinoma Western Blot

Example 6

The Effect of ARTS Mimetic Small Molecule A4 on Premalignant Cells

Acini-like organoids forms hollow lumen after 10 to 12 days in 3D culture system and remain hollow thereafter (Muthuswamy et al., 2001). Plasmids introduced by transient cell transfection are only expressed for a limited period of time, as they are not integrated into the genome and therefore may be lost by environmental factors and cell division. Therefore, the inventors next examined whether introduction of small-molecules may mimic ARTS function, specifically in inducing lumen formation and reversion of pre-malignant cells to a normal-like phenotype. The inventors thus tested initially the effect of the ARTS mimetic small molecule A4 on induction of apoptosis in 2D culture.

As shown in FIG. 10A-10B, treatment of M2 cells with the A4 molecule for 24 and 48 hours resulted in a decrease in cell proliferation. However, only low amount of apoptotic cells was apparent. Therefore, A4 molecule in these mammary epithelial cells induces decrease in cell proliferation.

Full text: Click here
Patent 2024
Apoptosis Breast Cell Proliferation Cells Division, Cell Epithelial Cells Genome Inventors Organoids Phenotype Plasmids Precancerous Conditions Proteins Signal Transduction Pathways Transfection Transforming Growth Factor beta Transients

Top products related to «Cell Proliferation»

Sourced in United States, Italy, Germany, United Kingdom, Spain, Japan, Switzerland, Sweden, China, France, Australia, Finland
The CellTiter 96® AQueous One Solution Cell Proliferation Assay is a colorimetric method for determining the number of viable cells in proliferation or cytotoxicity assays. The assay reagent contains a tetrazolium compound that is bioreduced by cells into a colored formazan product that is soluble in tissue culture medium, allowing the determination of viable cells.
Sourced in Japan, United States, China, Germany, United Kingdom
The Cell Counting Kit-8 is a colorimetric assay for the determination of cell viability and cytotoxicity. It utilizes a water-soluble tetrazolium salt that produces a water-soluble formazan dye upon reduction in the presence of an electron carrier. The amount of the formazan dye generated is directly proportional to the number of living cells.
Sourced in United States, China, Japan, Italy, Germany, United Kingdom, Switzerland, France, Canada, Netherlands, Australia, Belgium, India
The Microplate reader is a laboratory instrument used to measure the absorbance or fluorescence of samples in a microplate format. It can be used to conduct various assays, such as enzyme-linked immunosorbent assays (ELISA), cell-based assays, and other biochemical analyses. The core function of the Microplate reader is to precisely quantify the optical properties of the samples in a multi-well microplate.
Sourced in United States, Germany, Italy, China, United Kingdom, Sao Tome and Principe, Macao, France, India, Switzerland, Japan, Poland, Spain, Belgium, Canada, Australia, Brazil, Ireland, Israel, Hungary, Austria, Singapore, Egypt, Czechia, Netherlands, Sweden, Finland, Saudi Arabia, Portugal
MTT is a colorimetric assay used to measure cell metabolic activity. It is a lab equipment product developed by Merck Group. MTT is a tetrazolium dye that is reduced by metabolically active cells, producing a colored formazan product that can be quantified spectrophotometrically.
Sourced in Japan, United States, China, Germany
CCK-8 is a cell counting kit used to measure cell viability and proliferation. It utilizes a water-soluble tetrazolium salt that is reduced by living cells, producing a colored formazan dye that can be quantified using a spectrophotometer. The amount of formazan dye produced is directly proportional to the number of living cells in the sample.
Sourced in Japan, United States, China, Germany
The Cell Counting Kit-8 (CCK-8) is a colorimetric assay used to measure the number of viable cells in cell proliferation and cytotoxicity assays. It utilizes a water-soluble tetrazolium salt that is reduced by cellular dehydrogenases, resulting in the formation of a colored formazan dye. The amount of formazan dye is directly proportional to the number of living cells in the culture, which can be quantified by measuring the absorbance of the solution.
Sourced in United States, China, Japan, United Kingdom, France, Italy
The CellTiter 96® AQueous One Solution Cell Proliferation Assay kit is a colorimetric method for determining the number of viable cells in proliferation or cytotoxicity assays. The assay is based on the chemical reduction of a tetrazolium compound, resulting in the production of a colored formazan product that is quantified using a spectrophotometer.
Sourced in United States, China, Germany, Japan, United Kingdom, France, Australia, Switzerland, Ireland, Canada, India, Mongolia, Hong Kong
The Microplate reader is a versatile laboratory instrument used to measure and analyze the optical properties of samples in microplates. It is designed to quantify absorbance, fluorescence, or luminescence signals from various assays and applications.
Sourced in United States, Germany, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, India, Canada, Switzerland, Japan, Australia, Spain, Poland, Belgium, Brazil, Czechia, Portugal, Austria, Denmark, Israel, Sweden, Ireland, Hungary, Mexico, Netherlands, Singapore, Indonesia, Slovakia, Cameroon, Norway, Thailand, Chile, Finland, Malaysia, Latvia, New Zealand, Hong Kong, Pakistan, Uruguay, Bangladesh
DMSO is a versatile organic solvent commonly used in laboratory settings. It has a high boiling point, low viscosity, and the ability to dissolve a wide range of polar and non-polar compounds. DMSO's core function is as a solvent, allowing for the effective dissolution and handling of various chemical substances during research and experimentation.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.

More about "Cell Proliferation"

Cell division, cellular growth, cell growth, cell multiplication, cell expansion, mitosis, cytokinesis, tissue regeneration, tissue repair, homeostasis, cell cycle regulation, growth factors, cytokines, cell-cell interactions, cell-matrix interactions, cell cycle machinery, cell culture, flow cytometry, molecular biology, AI-driven analysis, cell proliferation assays, CellTiter 96® AQueous One Solution, Cell Counting Kit-8 (CCK-8), microplate reader, MTT, DMSO, FBS.
Cell proliferation is a fundamental biological process essential for growth, development, tissue repair, and homeostasis in multicellular organisms.
It involves the division and increase in the number of cells, regulated by various factors such as growth factors, cytokines, cell-cell and cell-matrix interactions, and the cell cycle machinery.
Dysregulation of cell proliferation can lead to pathological conditions like cancer, autoimmune disorders, and fibrotic diseases.
Researchers utilize a variety of techniques, including cell culture assays (e.g., CellTiter 96® AQueous One Solution, Cell Counting Kit-8), flow cytometry, and molecular biology methods to study cell proliferation.
Optimizing experimental protocols and leveraging innovative technologies, such as AI-driven comparisons of proliferation data (e.g., PubCompare.ai), can boost research productivity and reproducibility in this important field of study.
By understanding the key concepts, terminology, and available tools, researchers can design more effective cell proliferation experiments and advance our knowledge in this critical area of biology and medicine.