Cell Survival
This process involves complex mechanisms that allow cells to adapt, repair damage, and resist apoptosis or necrosis.
Understanding cell survival is crucial for advancinig research in areas such as tissue regeneration, cancer biology, and neurodegenerative diseases.
PubCompare.ai is an innovtaive AI-driven tool that can help optimize cell survival experiments by identifying the best protocols from literature, preprints, and patents, using advanced comparison techniques to improve reproducibility and drive research forward.
Most cited protocols related to «Cell Survival»
We ran the ZIP model on the drug combination data and calculated a summary delta score Δ for each drug pair by taking the average of all the delta scores over its dose combinations, i.e., where n is the number of dose combinations and n = 25 for a 6 × 6 dose–response matrix (monotherapy responses were removed). We compared the summary delta scores with the other scores derived from the HSA-, Bliss- and Loewe-based models. For HSA and Bliss, there were existing scores implemented in the original study [14] (link), which were based on the following methods: 1) NumExcess is the number of wells in the dose matrix that produced higher effect than both of the individual drug effects; 2) ExcessHSA is the sum of differences between the combination effect and the expected HSA effect; 3) MedianExcess is the median of the HSA excess; 4) ExcessCRX is an extension of the HSA model that was adjusted by dilution factors; 5) LS3 × 3 is the ExcessHSA applied to a 3 × 3 block showing the best HSA synergy in the dose matrix; 6) Beta (β) is the interaction parameter minimizing the deviance from the Bliss independence model over all dose combinations defined as ; and 7) Gamma (γ) is a combination of HSA and Bliss models minimizing For the Loewe-based models, we calculated the two common interaction indices CI (Eq.
Most recents protocols related to «Cell Survival»
Example 5
MTT cytotoxicity assays were used to assess the cytotoxicity of RGQDs/Nd-GQDs/Tm-GQDs. HeLa cells were plated in a 96-well plate with 5000 cells per well (100 μL/well) and kept in an incubator overnight at 37.1° C. while maintaining the CO2/air ratio of 1:19. After 24 h of incubation, the samples were added into each well at different concentrations for different materials (0 to 70 μg/mL, 1 mg/ml, 0.25 mg/ml for RGQDs, Nd-GQDs, Tm-GQDs, respectively). After 24 h of incubation, the medium was replaced by 100 μL of 1 mg/mL thiazolyl blue tetrazolium bromide. After 4 h of further incubation, MTT (3-(4-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was replaced with 100 μL of DMSO (dimethyl sulfoxide) to solubilize the precipitation. Reduction in MTT influences the metabolic activity of living cells, which can be assessed with absorbance measurements because living cells metabolize the MTT and form a highly absorbing purple colored byproduct known as formazan. The absorbance (essentially the cell viability) of the final sample was measured at 540 nm wavelength using the FLUOstar Omega microplate reader.
Example 8
Human subcutaneous pre-adipocytes (Zenbio (RTP, NC, U.S.A.)) were received pre-plated in white-walled 96-well plates. A schematic description of the protocol used for examining the effects of Compound A on lipid accumulation in differentiating human adipocytes is shown in
Calculation of the IC50 for inhibition of triglyceride accumulation in human adipocytes was determined by non-linear regression analysis of the RFU, using a variable slope, 4-parameter fit (GraphPad PRISM®).
Example 7
The MTT Cell Proliferation assay determines cell survival following apple stem cell extract treatment. The purpose was to evaluate the potential anti-tumor activity of apple stem cell extracts as well as to evaluate the dose-dependent cell cytotoxicity.
Principle: Treated cells are exposed to 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). MTT enters living cells and passes into the mitochondria where it is reduced by mitochondrial succinate dehydrogenase to an insoluble, colored (dark purple) formazan product. The cells are then solubilized with DMSO and the released, solubilized formazan is measured spectrophotometrically. The MTT assay measures cell viability based on the generation of reducing equivalents. Reduction of MTT only occurs in metabolically active cells, so the level of activity is a measure of the viability of the cells. The percentage cell viability is calculated against untreated cells.
Method: A549 and NCI-H520 lung cancer cell lines and L132 lung epithelial cell line were used to determine the plant stem cell treatment tumor-specific cytotoxicity. The cell lines were maintained in Minimal Essential Media supplemented with 10% FBS, penicillin (100 U/ml) and streptomycin (100 μg/ml) in a 5% CO2 at 37 Celsius. Cells were seeded at 5×103 cells/well in 96-well plates and incubated for 48 hours. Triplicates of eight concentrations of the apple stem cell extract were added to the media and cells were incubated for 24 hours. This was followed by removal of media and subsequent washing with the phosphate saline solution. Cell proliferation was measured using the MTT Cell Proliferation Kit I (Boehringer Mannheim, Indianapolis, IN) New medium containing 50 μl of MTT solution (5 mg/ml) was added to each well and cultures were incubated a further 4 hours. Following this incubation, DMSO was added and the cell viability was determined by the absorbance at 570 nm by a microplate reader.
In order to determine the effectiveness of apple stem cell extracts as an anti-tumor biological agent, an MTT assay was carried out and IC50 values were calculated. IC50 is the half maximal inhibitory function concentration of a drug or compound required to inhibit a biological process. The measured process is cell death.
Results: ASC-Treated Human Lung Adenocarcinoma Cell Line A549.
Results: ASC-Treated Human Squamous Carcinoma Cell Line NCI-H520.
Results: ASC-treated Lung Epithelial Cell Line L132.
Summary Results: Cytotoxicity of Apple Stem Cell Extracts.
Apple stem cell extracts killed lung cancer cells lines A549 and NCI-H520 at relatively low doses: IC50s were 12.58 and 10.21 μg/ml respectively as compared to 127.46 μg/ml for the lung epithelial cell line L132. Near complete anti-tumor activity was seen at a dose of 250 μg/ml in both the lung cancer cell lines. This same dose spared more than one half of the L132 cells. See Tables 7-10. The data revealed that apple stem cell extract is cytotoxic to lung cancer cells while sparing lung epithelial cells.
Example 9
The experiment of Example 7 was repeated substituting other plant materials for ASC. Plant stem cell materials included Dandelion Root Extract (DRE), Aloe Vera Juice (AVJ), Apple Fiber Powder (AFP), Ginkgo Leaf Extract (GLE), Lingonberry Stem Cells (LSC), Orchid Stem Cells (OSC) as described in Examples 1 and 2. The concentrations of plant materials used were nominally 250, 100, 50, 25, 6.25, 3.125, 1.562, and 0.781 μg/mL. These materials were tested only for cells the human lung epithelial cell line L132 (as a proxy for normal epithelial cells) and for cells of the human lung adenocarcinoma cell line A549 (as a proxy for lung cancer cells).
A549 cells lung cancer cell line cytotoxicity results for each of the treatment materials.
DRE-Treated Lung Cancer Cell Line A549 Cells.
AVJ-Treated Lung Cancer Cell line A549 Cells.
AFP-Treated Lung Cancer Cell line A549 Cells.
GLE-treated Lung Cancer Cell line A549 Cells.
LSC-treated lung cancer cell lines A549 cells.
OSC-treated Lung Cancer Cell line A549 Cells.
L132 cells (“normal” lung epithelial cell line) cytotoxicity results for each of the treatment materials.
DRE-Treated Lung Epithelial Cell Line L132 cells.
AVJ-Treated Lung Epithelial Cell Line L132 cells.
AFP-Treated Lung Epithelial Cell Line L132 cells.
GLE-Treated Lung Epithelial Cell Line L132 cells.
LSC-Treated Lung Epithelial Cell Line L132 cells.
OSC-Treated Lung Epithelial Cell Line L132 cells.
Calculated values.
Example 3
We tested the ability of mouse embryonic stem cells to tolerate s4U metabolic RNA-labeling after 12 h or 24 h at varying s4U concentrations (
To test the ability of the method to uncover s4U incorporation events in high throughput sequencing datasets we generated mRNA 3′ end libraries (employing Lexogen's QuantSeq, 3′ mRNA-sequencing library preparation kit) using total RNA prepared from cultured cells following s4U-metabolic RNA labeling for 24 h (
Furthermore, sequencing-ready libraries can be generated within only 4.5 h, with ˜2 h hands-on time. When combined with the invention, Quant-seq facilitates the accurate determination of mutation rates across transcript-specific regions because libraries exhibit a low degree of sequence-heterogeneity. Indeed, upon generating libraries of U-modified RNA through the Quant-seq protocol from total RNA of mES cells 24 h after s4U metabolic labeling we observed a strong accumulation of T>C conversions when compared to libraries prepared from total RNA of unlabeled mES cells (
We expect the same incorporation results of other modified nucleotides, such as s6G or 5-ethynyluridine, as reported previously (Eidinoff et al., Science. 129, 1550-1551 (1959); Jao et al. PNAS 105, 15779-15784 (2008); Melvin et al. Eur. J. Biochem. 92, 373-379 (1978); Woodford et al. Anal. Biochem. 171, 166-172 (1988)).
Example 1
1) Tucaresol
Tucaresol (0-1200 μM) is exposed for 72 hours to a panel of human liquid, hematological, and solid tumors such as multiple myeloma, leukemia, colorectal, non-small cell lung cancer (squamous and adenocarcinoma), hepatocellular, renal, pancreatic and breast cancer cell lines, and human non-tumor such as HUVEC, PBMC, skin fibroblast cells lines. Tucaresol is studied either alone or in combination with standard-of-care agents (1-100 μM). All cell lines are grown in standard serum-containing media with an exposure time of 24-144 hours. Cell viability is measured using, for example, the Cell TiterGlo® Viability Assay. The potency (IC50) and efficacy (% cell kill) are determined from the percent cell growth of the vehicle control.
2) Tucaresol Plus PD-1 Antibody
Tucaresol (0-1200 μM) in the presence of a PD-1 antibody is exposed for 72 hours to a panel of human liquid, hematological, and solid tumor such as multiple myeloma, leukemia, colorectal, non-small cell lung cancer (squamous and adenocarcinoma), hepatocellular, renal, pancreatic and breast cancer cell lines, and human non-tumor such as HUVEC, PBMC, skin fibroblast cells lines, and the viability of the cell lines are measured as described above. The viability of the cell lines in the presence of tucaresol plus PD-1 antibody is compared to the viability of the cell lines in the presence of a CTLA-4 antibody plus the PD-1 antibody or PD-1 antibody alone.
3) CTLA-4 Antibody Plus PD-1 Antibody
CTLA-4 antibody in the presence of a PD-1 antibody is exposed for 72 hours to a panel of human liquid, hematological, and solid tumor such as multiple myeloma, leukemia, colorectal, non-small cell lung cancer (squamous and adenocarcinoma), hepatocellular, renal, pancreatic and breast cancer cell lines, and human non-tumor such as HUVEC, PBMC, skin fibroblast cells lines, and the viability of the cell lines are measured as described above.
4) Tucaresol Plus Plinabulin
Tucaresol (0-1200 μM) in the presence of Plinabulin is exposed for 72 hours to a panel of human liquid, hematological, and solid tumor such as multiple myeloma, leukemia, colorectal, non-small cell lung cancer (squamous and adenocarcinoma), hepatocellular, renal, pancreatic and breast cancer cell lines, and human non-tumor such as HUVEC, PBMC, skin fibroblast cells lines, and the viability of the cell lines are measured as described above.
The viability of the cell lines in the presence of tucaresol, tucaresol plus PD-1 antibody, CTLA-4 antibody plus the PD-1 antibody, and tucaresol plus plinabulin are compared.
Top products related to «Cell Survival»
More about "Cell Survival"
This complex mechanism involves the ability of cells to adapt, repair damage, and resist apoptosis (programmed cell death) or necrosis (uncontrolled cell death).
Understanding cell survival is crucial for advancing research in areas such as tissue regeneration, cancer biology, and neurodegenerative diseases.
One of the key methods used to assess cell survival is the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.
This colorimetric assay measures the metabolic activity of cells, which is an indicator of their viability.
Another popular method is the CellTiter-Glo Luminescent Cell Viability Assay, which measures the amount of ATP (adenosine triphosphate) present in viable cells, providing a quantitative assessment of cell survival.
The Cell Counting Kit-8 (CCK-8) is another useful tool for measuring cell viability.
This assay relies on a water-soluble tetrazolium salt that is reduced by cellular dehydrogenases, resulting in a colorimetric change that can be detected using a microplate reader.
Researchers often utilize DMSO (dimethyl sulfoxide) and FBS (fetal bovine serum) in cell culture experiments to maintain cell health and promote cell survival.
DMSO is a commonly used cryoprotectant, while FBS provides essential nutrients and growth factors for cells.
PubCompare.ai is an innovative AI-driven tool that can help optimize cell survival experiments by identifying the best protocols from literature, preprints, and patents.
This platform uses advanced comparison techniques to improve reproducibility and drive research forward in the field of cell survival.