DNA Replication
This essential process ensures the accurate transmission of genetic information from one cell generation to the next.
During replication, the double-stranded DNA molecule is unwound and separated, serving as a template for the synthesis of new complementary strands.
A complex of enzymes and proteins, including DNA polymerase, primase, and helicase, orchestrate this intricate process.
Understanding DNA replication is crucial for advancing research in areas such as genetics, cell biology, and molecular biology.
Optimizing DNA replication protocols can drive forward innovation in fields like DNA sequencing, gene editing, and synthetic biology.
Expereince the future of DNA replication optimization today with PubCompare.ai, the AI-driven platform revolutionizing this critical area of study.
Most cited protocols related to «DNA Replication»
The output dataset included Ct number, gene name, sample name, concentration and replicate. We used Microsoft® Excel to open the exported Ct file from an ABI 7000 sequence analysis system and then to transform data into a tab delimited text file for SAS processing. The sample data set is shown in Table
All programs were developed with SAS 9.1 (SAS Institute).
Most recents protocols related to «DNA Replication»
Example 7
The MTT Cell Proliferation assay determines cell survival following apple stem cell extract treatment. The purpose was to evaluate the potential anti-tumor activity of apple stem cell extracts as well as to evaluate the dose-dependent cell cytotoxicity.
Principle: Treated cells are exposed to 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). MTT enters living cells and passes into the mitochondria where it is reduced by mitochondrial succinate dehydrogenase to an insoluble, colored (dark purple) formazan product. The cells are then solubilized with DMSO and the released, solubilized formazan is measured spectrophotometrically. The MTT assay measures cell viability based on the generation of reducing equivalents. Reduction of MTT only occurs in metabolically active cells, so the level of activity is a measure of the viability of the cells. The percentage cell viability is calculated against untreated cells.
Method: A549 and NCI-H520 lung cancer cell lines and L132 lung epithelial cell line were used to determine the plant stem cell treatment tumor-specific cytotoxicity. The cell lines were maintained in Minimal Essential Media supplemented with 10% FBS, penicillin (100 U/ml) and streptomycin (100 μg/ml) in a 5% CO2 at 37 Celsius. Cells were seeded at 5×103 cells/well in 96-well plates and incubated for 48 hours. Triplicates of eight concentrations of the apple stem cell extract were added to the media and cells were incubated for 24 hours. This was followed by removal of media and subsequent washing with the phosphate saline solution. Cell proliferation was measured using the MTT Cell Proliferation Kit I (Boehringer Mannheim, Indianapolis, IN) New medium containing 50 μl of MTT solution (5 mg/ml) was added to each well and cultures were incubated a further 4 hours. Following this incubation, DMSO was added and the cell viability was determined by the absorbance at 570 nm by a microplate reader.
In order to determine the effectiveness of apple stem cell extracts as an anti-tumor biological agent, an MTT assay was carried out and IC50 values were calculated. IC50 is the half maximal inhibitory function concentration of a drug or compound required to inhibit a biological process. The measured process is cell death.
Results: ASC-Treated Human Lung Adenocarcinoma Cell Line A549.
Results: ASC-Treated Human Squamous Carcinoma Cell Line NCI-H520.
Results: ASC-treated Lung Epithelial Cell Line L132.
Summary Results: Cytotoxicity of Apple Stem Cell Extracts.
Apple stem cell extracts killed lung cancer cells lines A549 and NCI-H520 at relatively low doses: IC50s were 12.58 and 10.21 μg/ml respectively as compared to 127.46 μg/ml for the lung epithelial cell line L132. Near complete anti-tumor activity was seen at a dose of 250 μg/ml in both the lung cancer cell lines. This same dose spared more than one half of the L132 cells. See Tables 7-10. The data revealed that apple stem cell extract is cytotoxic to lung cancer cells while sparing lung epithelial cells.
Example 9
The experiment of Example 7 was repeated substituting other plant materials for ASC. Plant stem cell materials included Dandelion Root Extract (DRE), Aloe Vera Juice (AVJ), Apple Fiber Powder (AFP), Ginkgo Leaf Extract (GLE), Lingonberry Stem Cells (LSC), Orchid Stem Cells (OSC) as described in Examples 1 and 2. The concentrations of plant materials used were nominally 250, 100, 50, 25, 6.25, 3.125, 1.562, and 0.781 μg/mL. These materials were tested only for cells the human lung epithelial cell line L132 (as a proxy for normal epithelial cells) and for cells of the human lung adenocarcinoma cell line A549 (as a proxy for lung cancer cells).
A549 cells lung cancer cell line cytotoxicity results for each of the treatment materials.
DRE-Treated Lung Cancer Cell Line A549 Cells.
AVJ-Treated Lung Cancer Cell line A549 Cells.
AFP-Treated Lung Cancer Cell line A549 Cells.
GLE-treated Lung Cancer Cell line A549 Cells.
LSC-treated lung cancer cell lines A549 cells.
OSC-treated Lung Cancer Cell line A549 Cells.
L132 cells (“normal” lung epithelial cell line) cytotoxicity results for each of the treatment materials.
DRE-Treated Lung Epithelial Cell Line L132 cells.
AVJ-Treated Lung Epithelial Cell Line L132 cells.
AFP-Treated Lung Epithelial Cell Line L132 cells.
GLE-Treated Lung Epithelial Cell Line L132 cells.
LSC-Treated Lung Epithelial Cell Line L132 cells.
OSC-Treated Lung Epithelial Cell Line L132 cells.
Calculated values.
Example 1
Cells were treated with the indicated compounds for 7 hours before lysis with Buffer RLT (QIAGEN, Hilden, Germany) containing 1% β-mercaptoethanol. Total RNA was isolated using the Rneasy Plus Mini kit (QIAGEN, Hilden, Germany) according to the manufacturer's instructions. First-strand cDNA was synthesized using the SuperScript VILO Master Mix (Thermo Fisher Scientific, Waltham, MA) according to the manufacturer's instructions. Real-time qPCR was run on ViiA 7 Real Time PCR System (Thermo Fisher Scientific). For qRT-PCR, the expression of the reference gene glucuronidase beta (GUSB) was used to normalize expression of the target genes DUSP6, SPRY4, and glycogen synthase kinase 3 beta (GSK3B). Replicate qRT-PCR reactions were analyzed for each sample, and QuantStudio Real-Time PCR software (Life Technologies, Carlsbad, CA) normalized the average expression of DUSP6, SPRY4, or GSK3B to the average expression of the reference gene GUSB in each sample.
Example 2
A. Seed Treatment with Isolated Microbe
In this example, an isolated microbe from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the isolated microbe as a seed coating, the corn will be planted and cultivated in the standard manner.
A control plot of corn seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.
It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiably higher biomass than the control corn plants.
The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.
The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.
In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.
B. Seed Treatment with Microbial Consortia
In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the microbial consortium as a seed coating, the corn will be planted and cultivated in the standard manner.
A control plot of corn seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.
It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiably higher biomass than the control corn plants.
The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.
The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.
In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.
C. Treatment with Agricultural Composition Comprising Isolated Microbe
In this example, an isolated microbe from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.
For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.
A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.
It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiably higher biomass than the control corn plants.
The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.
The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.
In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.
D. Treatment with Agricultural Composition Comprising Microbial Consortia
In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.
For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.
A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.
It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiably higher biomass than the control corn plants.
The biomass from the treated plants may be about 1-10% higher, 10-20% higher, 20-30% higher, 30-40% higher, 40-50% higher, 50-60% higher, 60-70% higher, 70-80% higher, 80-90% higher, or more.
The biomass from the treated plants may equate to about a 1 bushel per acre increase over the controls, or a 2 bushel per acre increase, or a 3 bushel per acre increase, or a 4 bushel per acre increase, or a 5 bushel per acre increase, or more.
In some aspects, the biomass increase is statistically significant. In other aspects, the biomass increase is not statistically significant, but is still quantifiable.
A. Seed Treatment with Isolated Microbe
In this example, an isolated microbe from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the isolated microbe as a seed coating, the corn will be planted and cultivated in the standard manner.
A control plot of corn seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.
It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.
The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.
B. Seed Treatment with Microbial Consortia
In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the microbial consortium as a seed coating, the corn will be planted and cultivated in the standard manner.
A control plot of corn seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.
It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.
The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.
C. Treatment with Agricultural Composition Comprising Isolated Microbe
In this example, an isolated microbe from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.
For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.
A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.
It is expected that the corn plants grown from the seeds treated with the with the agricultural composition will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.
The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.
D. Treatment with Agricultural Composition Comprising Microbial Consortia
In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.
For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.
A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.
It is expected that the corn plants grown from the seeds treated with the with the agricultural composition will exhibit a quantifiable and superior ability to tolerate drought conditions and/or exhibit superior water use efficiency, as compared to the control corn plants.
The drought tolerance and/or water use efficiency can be based on any number of standard tests from the art, e.g leaf water retention, turgor loss point, rate of photosynthesis, leaf color and other phenotypic indications of drought stress, yield performance, and various root morphological and growth patterns.
A. Seed Treatment with Isolated Microbe
In this example, an isolated microbe from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the isolated microbe as a seed coating, the corn will be planted and cultivated in the standard manner.
A control plot of corn seeds, which did not have the isolated microbe applied as a seed coating, will also be planted.
It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.
The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.
B. Seed Treatment with Microbial Consortia
In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as a seed coating to seeds of corn (Zea mays). Upon applying the microbial consortium as a seed coating, the corn will be planted and cultivated in the standard manner.
A control plot of corn seeds, which did not have the microbial consortium applied as a seed coating, will also be planted.
It is expected that the corn plants grown from the seeds treated with the seed coating will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.
The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.
C. Treatment with Agricultural Composition Comprising Isolated Microbe
In this example, an isolated microbe from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.
For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.
A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.
It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.
The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.
D. Treatment with Agricultural Composition Comprising Microbial Consortia
In this example, a microbial consortium, comprising at least two microbes from Tables 1-3 will be applied as an agricultural composition, administered to the corn seed at the time of sowing.
For example, it is anticipated that a farmer will apply the agricultural composition to the corn seeds simultaneously upon planting the seeds into the field. This can be accomplished, for example, by applying the agricultural composition to a hopper/bulk tank on a standard 16 row planter, which contains the corn seeds and which is configured to plant the same into rows. Alternatively, the agricultural composition can be contained in a separate bulk tank on the planter and sprayed into the rows upon planting the corn seed.
A control plot of corn seeds, which are not administered the agricultural composition, will also be planted.
It is expected that the corn plants grown from the seeds treated with the agricultural composition will exhibit a quantifiable and superior ability to utilize nitrogen, as compared to the control corn plants.
The nitrogen use efficiency can be quantified by recording a measurable change in any of the main nitrogen metabolic pool sizes in the assimilation pathways (e.g., a measurable change in one or more of the following: nitrate, nitrite, ammonia, glutamic acid, aspartic acid, glutamine, asparagine, lysine, leucine, threonine, methionine, glycine, tryptophan, tyrosine, total protein content of a plant part, total nitrogen content of a plant part, and/or chlorophyll content), or where the treated plant is shown to provide the same or elevated biomass or harvestable yield at lower nitrogen fertilization levels compared to the control plant, or where the treated plant is shown to provide elevated biomass or harvestable yields at the same nitrogen fertilization levels compared to a control plant.
The inoculants were prepared from isolates grown as spread plates on R2A incubated at 25° C. for 48 to 72 hours. Colonies were harvested by blending with sterile distilled water (SDW) which was then transferred into sterile containers. Serial dilutions of the harvested cells were plated and incubated at 25° C. for 24 hours to estimate the number of colony forming units (CFU) in each suspension. Dilutions were prepared using individual isolates or blends of isolates (consortia) to deliver 1×105 cfu/microbe/seed and seeds inoculated by either imbibition in the liquid suspension or by overtreatment with 5% vegetable gum and oil.
Seeds corresponding to the plants of table 15 were planted within 24 to 48 hours of treatment in agricultural soil, potting media or inert growing media. Plants were grown in small pots (28 mL to 200 mL) in either a controlled environment or in a greenhouse. Chamber photoperiod was set to 16 hours for all experiments on all species. Air temperature was typically maintained between 22-24° C.
Unless otherwise stated, all plants were watered with tap water 2 to 3 times weekly. Growth conditions were varied according to the trait of interest and included manipulation of applied fertilizer, watering regime and salt stress as follows:
-
- Low N—seeds planted in soil potting media or inert growing media with no applied N fertilizer
- Moderate N—seeds planted in soil or growing media supplemented with commercial N fertilizer to equivalent of 135 kg/ha applied N
- Insol P—seeds planted in potting media or inert growth substrate and watered with quarter strength Pikovskaya's liquid medium containing tri-calcium phosphate as the only form phosphate fertilizer.
- Cold Stress—seeds planted in soil, potting media or inert growing media and incubated at 10° C. for one week before being transferred to the plant growth room.
- Salt stress—seeds planted in soil, potting media or inert growing media and watered with a solution containing between 100 to 200 mg/L NaCl.
Untreated (no applied microbe) controls were prepared for each experiment. Plants were randomized on trays throughout the growth environment. Between 10 and 30 replicate plants were prepared for each treatment in each experiment. Phenotypes were measured during early vegetative growth, typically before the V3 developmental stage and between 3 and 6 weeks after sowing. Foliage was cut and weighed. Roots were washed, blotted dry and weighed. Results indicate performance of treatments against the untreated control.
The data presented in table 15 describes the efficacy with which a microbial species or strain can change a phenotype of interest relative to a control run in the same experiment. Phenotypes measured were shoot fresh weight and root fresh weight for plants growing either in the absence of presence of a stress (assay). For each microbe species, an overall efficacy score indicates the percentage of times a strain of that species increased a both shoot and root fresh weight in independent evaluations. For each species, the specifics of each independent assay is given, providing a strain ID (strain) and the crop species the assay was performed on (crop). For each independent assay the percentage increase in shoot and root fresh weight over the controls is given.
Example 3
Investigation of Virus Infectivity as a Factor that Determines Plaque Size.
With the revelation that plaque formation is strongly influenced by the immunogenicity of the virus, the possibility that infectivity of the virus could be another factor that determines plaque sizes was investigated. The uptake of viruses into cells in vitro was determined by measuring the amounts of specific viral RNA sequences through real-time PCR.
To measure total viral RNA, total cellular RNA was extracted using the RNEasy Mini kit (Qiagen), and complementary DNA synthesized using the iScript cDNA Synthesis kit (Bio-Rad). To measure total viral RNA, quantitative real-time PCR was done using a primer pair targeting a highly conserved region of the 3′ UTR common to all four serotypes of dengue; inter-sample normalization was done using GAPDH as a control. Primer sequences are listed in Table 5. Pronase (Roche) was used at a concentration of 1 mg/mL and incubated with infected cells for five minutes on ice, before washing with ice cold PBS. Total cellular RNA was then extracted from the cell pellets in the manner described above.
The proportion of infected cells was assessed by flow cytometry. Cells were fixed and permeabilised with 3% paraformaldehyde and 0.1% saponin, respectively. DENV envelope (E) protein was stained with mouse monoclonal 4G2 antibody (ATCC) and AlexaFluor488 anti-mouse secondary antibody. Flow cytometry analysis was done on a BD FACS Canto II (BD Bioscience).
Unexpectedly, despite DENV-2 PDK53 inducing stronger antiviral immune responses, it had higher rates of uptake by HuH-7 cells compared to DENV-2 16681 (
Results above demonstrate that the DENV-2 PDK53 and DENV-3 PGMK30 are polarized in their properties that influence plaque morphologies. While both attenuated strains were selected for their formation of smaller plaques compared to their parental strains, the factors leading to this outcome are different between the two.
Accordingly, this study has demonstrated that successfully attenuated vaccines, as exemplified by DENV-2 PDK53 in this study, form smaller plaques due to induction of strong innate immune responses, which is triggered by fast viral uptake and spread of infection. In contrast, DENV-3 PGMK30 form smaller plaques due to its slower uptake and growth in host cells, which inadvertently causes lower up-regulation of the innate immune response.
Based on the results presented in the foregoing Examples, the present invention provides a new strategy to prepare a LAV, which expedites the production process and ensures the generation of effectively attenuated viruses fit for vaccine use.
Example 3
Reciprocating tests were used to characterize both friction and wear behavior of the ester blends at 25° C. and 40° C. under boundary lubrication. As mentioned prior, each ester was blended at a concentration of 1% by weight. Neat oil served as the control. The testing device is a custom ball-on-flat microtribometer as seen in
Reciprocating tests were carried out using a SiC-steel interface: a 4 mm diameter silicon carbide ball on an AISI 8620 steel substrate. The ceramic was chosen for its superior hardness relative to the substrate in order to isolate the majority of the wear to the substrate and preserve the probes geometry. In this way, a consistent contact pressure can be maintained. A constant normal load of 3.4 N (maximum Hertzian pressure of 1.5 GPa) was applied as the substrate was translated at a rate of 10 mm/s over a 8 mm stroke length for 4500 cycles. The load was chosen after initial tests with the PEs at 1.0 GPa were not sufficient to generate measureable wear scars (wear depths were on the same order as the surface roughness). The substrate was isotropically polished to a finish of 0.043 μm Ra determined from a scan area of 1.41 mm×1.88 mm using a Zygo optical profilometer. Based on EHL theory, the roughness, load, and viscosity parameters placed this study well within the boundary lubrication regime as the estimated λ ratio was much less than one.
After test completion, the substrate and probes were wiped with isopropyl alcohol before undergoing SEM and EDS analysis. In addition, the substrate wear scars were scanned using the Zygo optical profilometer. Nine to eleven unique scan areas were gathered to capture the entire length of each scar. All topographic and force data was then imported into MATLAB where the average wear depth and coefficient of friction was calculated. Three replicate tests were completed for each treatment.
Top products related to «DNA Replication»
More about "DNA Replication"
DNA replication is the fundamental biological process that ensures the accurate transmission of genetic information from one cell generation to the next.
During this essential process, the double-stranded DNA molecule is unwound and separated, serving as a template for the synthesis of new complementary strands.
A complex of enzymes and proteins, including DNA polymerase, primase, and helicase, orchestrate this intricate process.
Understanding and optimizing DNA replication protocols is crucial for advancing research in areas such as genetics, cell biology, molecular biology, DNA sequencing, gene editing, and synthetic biology.
Expereince the future of DNA replication optimization today with PubCompare.ai, the AI-driven platform revolutionizing this critical area of study.
Discover the power of PubCompare.ai, the intelligent platform that helps you easily locate the best protocols from literature, pre-prints, and patents, and identify the optimal protocols and products to drive your research forward.