Protocol full text hidden due to copyright restrictions
Open the protocol to access the free full text link
Example 10
Binding of MSLN-BiTE to membrane-bound target expressed in cells was determined with an on-cell affinity assay. 3×104 cells per well of a microtiter plate were incubated with MSLN-BiTE protein in a dose response for 16-22 h at 4° C. Cells were washed twice with flow buffer (PBS that contained 2% fetal calf serum and 0.01% sodium azide), and then resuspended in flow buffer and incubated with an anti-His Fab labeled with Alexa Fluor-647 for 50 minutes at 4° C. Cells were fixed after incubation to optimize detection of the fluorescent signal. Cells were then washed twice and resuspended in flow buffer that contained propidium iodide at 1 ug/ml. Cells were analyzed by flow cytometry for live cells that were positive for Alexa Fluor-647. EC50 values were determined from the dose response curve of Alexa Fluor-647 positive cells.
Example 13
A vehicle according to this application example includes any of the MEMS devices described above and an attitude control section that performs attitude control based on a detection signal output from the MEMS device.
The vehicle is mounted with the MEMS device in which the rotational displacement of the movable body in the in-plane direction of the major surface is restricted and which can continuously detect acceleration or the like even when an excessive impact is applied, and the attitude control section performing attitude control based on the detection signal output from the MEMS device. Therefore, it is possible to increase the reliability of the vehicle mounted with the MEMS device described above.
Example 12
An electronic apparatus according to this application example includes any of the MEMS devices described above and a control section that performs control based on a detection signal output from the MEMS device.
The electronic apparatus includes the MEMS device in which the rotational displacement of the movable body in the in-plane direction of the major surface is restricted and which can continuously detect acceleration or the like even when an excessive impact is applied, and the control section performing control based on the detection signal output from the MEMS device. Therefore, it is possible to increase the reliability of the electronic apparatus mounted with the MEMS device described above.