DNA libraries for sequencing are normally prepared from double-stranded DNA (Fig. 1 ). However, for ancient DNA the use of single-stranded DNA may be advantageous as it will double its representation in the library. Furthermore, in a single-stranded DNA library, double-stranded molecules that carry modifications on one strand that prevent their incorporation into double-stranded DNA libraries could still be represented by the unmodified strand. We therefore devised a single-stranded library preparation method wherein the ancient DNA is dephosphorylated, heat denatured, and ligated to a biotinylated adaptor oligonucleotide, which allows its immobilization on streptavidin-coated beads (Fig. 1 ). A primer hybridized to the adaptor is then used to copy the original strand with a DNA polymerase. Finally, a second adaptor is joined to the copied strand by blunt-end ligation and the library molecules are released from the beads. The entire protocol is devoid of DNA purification steps, which inevitably cause loss of material.
We applied this method to aliquots of the two DNA extracts (as well as side fractions) that were previously generated from the 40 mg of bone that comprised the entire inner part of the phalanx (2 (link), 8 ). Comparisons of these newly generated libraries to the two libraries generated in the previous study (2 (link)) show at least a 6-fold and 22-fold increase in the recovery of library molecules (8 ), which is particularly pronounced for longer molecules (Fig. S4 ).
In addition to improved sequence yield, the single-strand library protocol reveals new aspects of DNA fragmentation and modification patterns (8 ). Since the ends of both DNA strands are left intact, it reveals that strand breakage occurs preferentially before and after guanine residues (Fig. S6 ), suggesting that guanine nucleotides are frequently lost from ancient DNA, possibly as the result of depurination. It also reveals that deamination of cytosine residues occurs with almost equal frequencies at both ends of the ancient DNA molecules. Since deamination is hypothesized to be frequent in single-stranded DNA overhangs (9 (link), 10 (link)), this suggests that 5′- and 3′-overhangs occur at similar lengths and frequencies in ancient DNA.
We applied this method to aliquots of the two DNA extracts (as well as side fractions) that were previously generated from the 40 mg of bone that comprised the entire inner part of the phalanx (2 (link), 8 ). Comparisons of these newly generated libraries to the two libraries generated in the previous study (2 (link)) show at least a 6-fold and 22-fold increase in the recovery of library molecules (8 ), which is particularly pronounced for longer molecules (
In addition to improved sequence yield, the single-strand library protocol reveals new aspects of DNA fragmentation and modification patterns (8 ). Since the ends of both DNA strands are left intact, it reveals that strand breakage occurs preferentially before and after guanine residues (