The full text of these articles was searched for word stems “bind” and “muta” in a single paragraph. The pdf2text conversion software keeps paragraphs together as a single line. Therefore, both words did not need to exist in a single sentence. The word stem “bind” was chosen because it can represent DNA binding or RNA binding activities independent of an assay, while the word stem “muta” (for mutated or mutant or mutagenesis) indicates that studies were performed to assess whether that nucleotide or region is necessary and sufficient for activity.
Mutagenesis
This can be achieved through various techniques, such as chemical agents, radiation, or genetic engineering.
Mutagenesis is a valuable tool in scientific research, allowing scientists to study the effects of specific genetic modifications and explore the underlying mechanisms of biological processes.
By understanding the consequences of mutations, researchers can gain insights into the function of genes, the development of diseases, and the potential for therapeutic interventions.
Mutagenesis is widely used in fields like genetics, molecular biology, and biotechnology to create novel strains, improve product yields, and develop new treatments.
Teh applications of mutagenesis research are diverse and continue to expand as our understanding of the genetic code and its manipulation advances.
Most cited protocols related to «Mutagenesis»
The full text of these articles was searched for word stems “bind” and “muta” in a single paragraph. The pdf2text conversion software keeps paragraphs together as a single line. Therefore, both words did not need to exist in a single sentence. The word stem “bind” was chosen because it can represent DNA binding or RNA binding activities independent of an assay, while the word stem “muta” (for mutated or mutant or mutagenesis) indicates that studies were performed to assess whether that nucleotide or region is necessary and sufficient for activity.
In step 1 of the two-step extraction process, global signature extraction was performed for the samples with a low mutation burden (n = 2,624). These excluded hypermutated tumours: those with putative polymerase epsilon (POLE) defects or mismatch repair defects (microsatellite instable tumours), skin tumours (which had intense UV-light mutagenesis) and one tumour with temozolomide (TMZ) exposure. Because the underlying algorithm of SignatureAnalyzer performs a stochastic search, different runs can produce different results. In step 1, we ran SignatureAnalyzer 10 times and selected the solution with the highest posterior probability. In step 2, additional signatures unique to hypermutated samples were extracted (again selecting the highest posterior probability over ten runs) while allowing all signatures found in the samples with low mutation burden, to explain some of the spectra of hypermutated samples. This approach was designed to minimize a well-known ‘signature bleeding’ effect or a bias of hyper- or ultramutated samples on the signature extraction. In addition, this approach provided information about which signatures are unique to the hypermutated samples, which was later used when attributing signatures to samples.
A similar strategy was used for signature attribution: we performed a separate attribution process for low- and hypermutated samples in all COMPOSITE, SBS, DBS and indel signatures. For downstream analyses, we preferred to use the COMPOSITE attributions for SBSs and the separately calculated attributions for DBSs and indels. Signature attribution in samples with a low mutation burden was performed separately in each tumour type (for example, Biliary–AdenoCA, Bladder–TCC, Bone–Osteosarc, and so on). Attribution was also performed separately in the combined microsatellite instable tumours (n = 39), POLE (n = 9), skin melanoma (n = 107) and TMZ-exposed samples (syn11738314). In both groups, signature availability (which signatures were active, or not) was primarily inferred through the automatic relevance determination process applied to the activity matrix H only, while fixing the signature matrix W. The attribution in samples with a low mutation burden was performed using only signatures found in the step 1 of the signature extraction. Two additional rules were applied in SBS signature attribution to enforce biological plausibility and minimize a signature bleeding: (i) allow SBS4 (smoking signature) only in lung, head and neck cases; and (ii) allow SBS11 (TMZ signature) in a single GBM sample. This was enforced by introducing a binary, signature-by-sample signature indicator matrix Z (1, allowed; 0, not allowed), which was multiplied by the H matrix in every multiplication update of H. No additional rules were applied to indel or DBS signature attributions, except that signatures found in hypermutated samples were not allowed in samples with a low mutation burden.
Most recents protocols related to «Mutagenesis»
Example 6
Both RGA 1 and RGA 2 gene functions can be validated with different methods well known in the art. Genetic transformation of a susceptible wheat cultivar overexpressing RGA 1 or RGA 2 under different promoters can be obtained and tested for their ability to confer OWBM resistance in glass-house conditions or in the field.
Validation can also be achieved by mutagenesis with methods known from skilled person in the art, with for example, EMS treatment. The validation consists of obtaining several independent “loss-of-resistance” mutants derived from the EMS treatment of a resistant wheat cultivar and further identifying mutations within the candidate gene; thus confirming the resistance function of the gene. For example, such method is described by Periyannan et al. (2013) used to identify the wheat stem rust resistance gene Sr33.
Example 6
Strain 5 was subjected to another round of mutagenesis with increasing concentrations and exposure time to 4-NQO (37 μM for 30 minutes at 28° C.). This population of cells was subsequently subdivided and grown in standard lipid production medium supplemented with a range of cerulenin concentrations (7-50 μM). Cells from all concentrations were pooled and fractionated over a 60% Percoll/0.15 M NaCl density gradient. Oil laden cells recovered from a density zone of 1.02 g/mL were plated and assessed for glucose consumption and fatty acid profile. One of these clones was subsequently stabilized and given the strain designation “Strain 6”.
Example 2
The DNA encoding the amino acid sequence of human KIF5B-RET variant 1 was placed in a lentivirus vector under a doxycycline-inducible promoter to maximize expression with a carboxyl-terminal FLAG epitope to facilitate immunodetection of the fusion by anti-FLAG antibodies. Lentiviral-mediated gene transduction was used to express KIF5B-RET in Ba/F3 cells, KIF5B-RET dependent cells were selected by IL-3 withdrawal and confirmed to express the KIF5B-RET fusion protein by immunoblot analysis. To generate Ba/F3 cells carrying V804 substitutions, WT KIF5B-RET Ba/F3 cells were mutagenized overnight with ENU and plated in 96-well plates for a period of 2 weeks in the presence of 6 concentrations of MKIs (ponatinib, regorafenib, cabozantinib, or vandetanib). The concentrations chosen ranged from 2×-64× the proliferation IC50 for each compound: 125 nM to 4 μmol/L cabozantinib, 20 to 640 nM ponatinib, and 250 nM to 8 μmol/L vandetanib. Genomic DNA was isolated from resistant clones, and Sanger sequencing was used to identify those that harbored substitutions.
Example 2
Directed TpH Engineering
It was found that Homo sapiens TpH2, i.e., the fragment set forth as SEQ ID NO:13; hsTpH2, was sensitive to p-chlorophenylalanine. However, mutations at residues N97 and/or P99 were found to confer resistance to p-chlorophenylalanine and to exhibit improved 5HTP biosynthesis after growing cells in the presence of 100 mg/l of tryptophan overnight at 3TC. A further, saturated mutagenesis, study found that isoleucine (I) was a beneficial amino acid change at residue N97, while cysteine (C), aspartic acid (D), leucine (L) and glutamine (Q) were shown to be beneficial at residue P99. In particular, the combined changes 1\197I/P99D in hsTpH2 showed a >15% increase in 5HTP production in the presence of 100 mg/l tryptophan and the combined changes N97I/P99C in hsTpH2 showed a >25% increase in 5HTP biosynthesis, over the parent TPH2 sequence (SEQ ID NO:13) after acquiring the E2K mutation.
Example 1
Since the biosynthetic pathway of anatabine and its associated genes is not completely known, a novel genetic variation was created in a population of tobacco plants to identify plants that have a significantly reduced ability to biosynthesize anatabine. These plants very likely have a mutated non-functional gene, critical for anatabine biosynthesis.
A population of the Flue-cured variety “401” was used in these experiments. Approximately 5000 seeds were treated with 0.6% ethyl methane sulfonate and germinated. M1 plants were grown in the field and M2 seeds were collected. Fifteen hundred M2 seeds were germinated and grown in 4-inch pots. At 50% flowering stage, plants were topped. Leaf samples were collected 2 weeks after topping and the samples screened for anatabine levels using high performance thin layer chromatography (HP-TLC) and gas chromatography.
After screening for alkaloids, two Flue Cured (FC) 401 ultra-low anatabine (ULA) lines were selected for trait development. It is noted that the amount of nicotine in both ULA lines is unchanged.
Top products related to «Mutagenesis»
More about "Mutagenesis"
This can be achieved through various techniques, such as chemical agents, radiation, or genetic engineering.
Mutagenesis allows scientists to study the effects of specific genetic modifications and explore the underlying mechanisms of biological processes.
By understanding the consequences of mutations, researchers can gain insights into the function of genes, the development of diseases, and the potential for therapeutic interventions.
Mutagenesis is widely used in fields like genetics, molecular biology, and biotechnology to create novel strains, improve product yields, and develop new treatments.
Some key techniques and products used in mutagenesis research include the KOD-Plus-Mutagenesis Kit, Lipofectamine 2000, Q5 Site-Directed Mutagenesis Kit, Dual-Luciferase Reporter Assay System, QuikChange mutagenesis kit, QuikChange II Site-Directed Mutagenesis Kit, PrimeSTAR Mutagenesis Basal Kit, QuikChange II XL Site-Directed Mutagenesis Kit, and QuikChange Lightning Site-Directed Mutagenesis Kit.
By leveraging these tools and methods, researchers can induce precise genetic changes, study their effects, and uncover new insights that drive advancements in fields like genetics, molecular biology, and biotechnology.
Teh applications of mutagenesis research are diverse and continue to expand as our understanding of the genetic code and its manipulation advances.