The largest database of trusted experimental protocols

Vision

Vision: The ability to see and interpret visual information.
This complex process involves the eye, the optic nerve, and the visual cortex of the brain.
Vision allows individuals to identify, locate, and understand the world around them.
Defects in vision can lead to various eye disorders and visual impairments, and understanding the mechanisms of vision is crucial for developing treatments and assistive technologies.
Researchers in this field explore the anatomy, physiology, and psychology of the visual system to advance our understanding of this fundamental human sense.

Most cited protocols related to «Vision»

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2008
Secure resin cement Vision
Exon-spanning reads sometimes have very small anchors (defined here as 1–7 bp) in one of the exons. Correctly aligning these reads is extremely difficult because a 1- to 7-bp anchor will align to numerous locations, even in a local FM index. Arguably the most effective approach to align such short-anchored reads is to use splice site information to remove the introns computationally before alignment. We can identify and collect splice site locations when aligning reads with long anchors and then rerun HISAT for the short-anchored reads (Supplementary Fig. 9). This two-step approach is very similar to the two-step algorithm in TopHat2.
More specifically, in the two-step HISATx2 method, we use the first run of HISAT (HISATx1) to generate a list of splice sites supported by reads with long anchors. In the second run we then use the splice sites to align reads with small anchors. For example, consider the unmapped read spanning exons e2 and e3 (the upper portion of Supplementary Fig. 9). The right part of the read will be mapped to exon e3 using the global search and extension operations, leaving a short, 3-bp segment unmapped. We then check the splice sites found in the first run of HISAT to find any splice sites near this partial alignment. In this example, we find a splice site supported by a read spanning exons e2 and e3 with long anchors in each exon. On the basis of this information, we directly compare the 3 bp of the read and the corresponding genomic sequence in exon e2. If it matches, we combine the 3-bp alignment with the alignment of the rest of the read. This ‘junction extension’ procedure that makes use of previously identified splice sites is represented by brown arrows in the figure.
As we show in our experiments on simulated reads, this two-step strategy produces accurate alignment of reads with anchors as small as 1 bp (see Results). Although HISATx2 has considerably better sensitivity, it takes twice as long to run as HISATx1. As an alternative, we developed a hybrid method, HISAT, which has sensitivity almost equal to that of HISATx2 but with the speed of HISATx1. HISAT collects splice sites as it processes the reads, similarly to the first run of HISATx2. However, as it is processing, it uses the splice sites collected thus far to align short-anchored reads. In the vast majority of cases, it can align even the shortest anchors because it has seen the associated splice sites earlier. This result follows from the observation that most splice sites can be discovered within the first few million reads, and most RNA-seq data sets contain tens of millions of reads. As our results show, HISAT provides alignment sensitivity that very nearly matches the two-step HISATx2 algorithm, with a run time nearly as fast as the one-step HISAT method.
The hybrid approach is also effective in aligning reads spanning more than two exons, which are more likely to have small anchors. The alignment sensitivity for such reads increases from 53% using HISATx1 to 95% using HISAT (Supplementary Fig. 2).
Publication 2015
Exons Genome Hybrids Hypersensitivity Introns RNA-Seq Toxic Epidermal Necrolysis Vision
All samples were stored at − 80 °C until use. Serum levels of C-reactive protein (CRP) were determined by an immuno-turbidimetric technique using an Olympus AU 400 biochemical analyzer (Olympus Optical, Tokyo, Japan), and erythrocyte sedimentation rate (ESR) was measured according to the Fahreus and Westergren method. ANAs were detected using indirect immunofluorescence on HEP2 cells, and the autoantibodies of the ENA complex (anti-U1RNP, anti-Ro, anti-La, anti-DNA-topoisomerase I, anti-Jo-1, anti-P protein, anti-Sm, and anti-centromere) were assayed by immunoblot. Plasma levels of Hsp90 were assessed by a high-sensitivity ELISA kit (eBioscience, Vienna, Austria) according to the manufacturer's protocol. The assay recognizes human Hsp90 alpha. The calculated sensitivity is 0.03 ng/mL. The absorbance value was established at 450 nm by an ELISA reader (SUNRISE; Tecan, Grödig, Austria).
Full text: Click here
Publication 2021
Autoantibodies Biological Assay Cells Centromere DNA Topoisomerases, Type I Ducks Enzyme-Linked Immunosorbent Assay Homo sapiens HSP90 Heat-Shock Proteins Hypersensitivity Indirect Immunofluorescence OCA2 protein, human Plasma Sedimentation Rates, Erythrocyte Serum Proteins Turbidimetry Vision
Preprocessing steps were applied as described above. QuPath’s Cell detection command was then used to identify cells across all cores based upon nuclear staining. This command additionally estimates the full extent of each cell based upon a constrained expansion of the nucleus region, and calculates up to 33 measurements of intensity and morphology, including nucleus area, circularity, staining intensity for hematoxylin and DAB, and nucleus/cell area ratio. Because not all of these measurements are expected to provide independent or useful information with regard to cell classification, a subset of 16 measurements was chosen empirically and supplemented for each cell by measuring the local density of cells, and taking a Gaussian-weighted sum of the corresponding measurements within neighboring cells using QuPath’s Add smoothed features command. A two-way random trees classifier was then interactively trained to distinguish tumor epithelial cells from all other detections (comprising non-epithelial cells, necrosis, or any artefacts misidentified as cells) and applied across all slides (see Supplementary Video 2). Intensity thresholds were set to further subclassify tumor cells as being negative, weak, moderate or strongly positive for p53 staining based upon mean nuclear DAB optical densities. An H-score was calculated for each tissue core by adding 3x% strongly stained tumor nuclei, 2x% moderately stained tumor nuclei, and 1x% weakly stained tumor nuclei32 (link), giving results in the range 0 (all tumor nuclei negative) to 300 (all tumor nuclei strongly positive).
Full text: Click here
Publication 2017
Cell Nucleus Cells Debility Epithelial Cells Hematoxylin Necrosis Neoplasms Neoplasms, Epithelial Tissues Trees Vision
Several studies have demonstrated that propensity score matching eliminates a greater proportion of the systematic differences in baseline characteristics between treated and untreated subjects than does stratification on the propensity score or covariate adjustment using the propensity score (Austin, 2009a ; Austin, Grootendorst, & Anderson, 2007; (link) Austin & Mamdani, 2006 (link)). In some settings propensity score matching and IPTW removed systematic differences between treated and untreated subjects to a comparable degree; however, in some settings, propensity score matching removed modestly more imbalance than did IPTW (Austin, 2009a ). Lunceford and Davidian (2004) (link) demonstrated that stratification results in estimates of average treatment effects with greater bias than does a variety of weighted estimators.
Propensity score matching, stratification on the propensity score, and IPTW differ from covariate adjustment using the propensity score in that the three former methods separate the design of the study from the analysis of the study; this separation does not occur when covariate adjustment using the propensity score is used. Appropriate diagnostics exist for each of the four propensity score methods to assess whether the propensity score model has been adequately specified. However, with propensity score matching, stratification on the propensity score, and IPTW, once one is satisfied with the specification of the propensity score model, one can directly estimate the effect of treatment on outcomes in the matched, stratified, or weighted sample. Specification of a regression model relating the outcome to treatment is not necessary. In contrast, when using covariate adjustment using the propensity score, once one is satisfied that the propensity score model has been adequately specified, one must fit a regression model relating the outcome to an indicator variable denoting treatment status and to the propensity score. In specifying the regression model, one must correctly model the relationship between the propensity score and the outcome (e.g., specifying whether the relationship is linear or nonlinear). In doing so, the outcome is always in sight because the outcome model contains both the propensity score and the outcome. As Rubin (2001) notes, when using regression modeling, the temptation to work toward the desired or anticipated result is always present. Another difference between the four propensity score approaches is that covariate adjustment using the propensity score and IPTW may be more sensitive to whether the propensity score has been accurately estimated (Rubin, 2004 ).
The reader is referred elsewhere to empirical studies comparing the results of analyses using the different propensity score methods on the same data set (Austin & Mamdani, 2006 (link); Kurth et al., 2006 (link)). Prior Monte Carlo studies have compared the relative performance of the different propensity score methods for estimating risk differences, relative risks, and marginal and conditional odds ratios (Austin, 2007b (link), 2008c (link), 2010 (link); Austin, Grootendorst, Normand, & Anderson, 2007 (link)). It is important to note that two of these studies found that stratification, matching, and covariate adjustment using the propensity score resulted in biased estimation of both conditional and marginal odds ratios.
Publication 2011
austin Diagnosis Vision

Most recents protocols related to «Vision»

Example 3

To evaluate the crystal morphology of the example iPP/CNF composites, a ME520 Series polarized light microscope (PLM) (AmScope, USA) was utilized. Sections that were 3 μm-thick were obtained from cross sections of injection molded specimens using a Sorvall MT2-B Ultramicrotome. Each section was placed between a glass slide and a cover slip then transferred to a hot plate (Thermo Scientific) at 200° C. for 2 min before it was cooled at room temperature.

FIG. 5 shows the crystal morphology of iPP and iPP/CNF composites obtained by a polarized light microscope. Because no cold-crystallization peaks were observed in the DSC scans for all specimens, the crystal morphology caused by the micrograph preparation was negligible. As the CNF content was increased in the iPP matrix, the nucleation density increased, but spherulite size decreased. Typical crystal diameters of iPP, iPP/MA, and the iPP/CNF3%, iPP/CNF10%, iPP/CNF30% and iPP/MA/CNF10% composites were about 33 μm, 27 μm, 21 μm, 12 μm, 8 μm, and 10 μm, respectively. These results suggested that CNF restricted the folding motion of polymer chains during crystallization and made the re-entry of polymer chains into the crystal face more difficult, resulting in smaller crystals. Hence, steric hindrance attributed to a large concentration of CNF resulted in the high values of ΔE for iPP, as shown in Table 5. Meanwhile, MAPP allowed the PP to mix more effectively with CNF. MAPP may also have facilitated transcrystallization, a process in which spherulites grow perpendicularly to a surface. Transcrystallization can improve the attachment of polymer segments to the crystal surface and reduce ΔE. However, the method used in this example to prepare sections for PLM observation involved fairly rapid cooling (˜80° C./min), which may have created thin transcrystalline layers. Thin crystal layers are not readily seen in PLM at high magnification because of their weak light intensity. A possible site of CNF transcrystallization was identified in the iPP/MA/CNF10% composite shown in FIG. 5. As a comparison, the morphology of the PP spherulites on the CNF surfaces in the PP/CNF3% composite is also shown and was almost identical to that of the iPP matrix. These results suggest that MAPP caused a transcrystalline layer formation. The PLM micrographs also confirmed kinetic results obtain in previous sections.

The overall crystallization rate may be dependent on nucleation rate and crystal growth rate. For iPP/CNF3%, the presence of CNF increased the nucleation density without affecting the crystal growth. Therefore, iPP/CNF3% had an accelerated crystallization rate. For iPP/CNF10%, the nucleation density pf iPP was increased by the CNF. At the same time, crystal growth was impeded by CNF. Overall, CNF reduced iPP's crystallization rate when present at 10 wt. %. After MAPP was introduced to iPP/CNF10%, the nucleation density of the composite furthered increased because of a coupling effect. Moreover, the formation of transcrystalline layers facilitated crystal growth.

Full text: Click here
Patent 2024
Cold Temperature Crystal Growth Crystallization Debility Face Kinetics Light Microscopy Microscopy, Polarization Polymers Radionuclide Imaging Ultramicrotomy Vision

Example 12

There has been a growing interest in the fabrication of nanofibers derived from natural polymers due to their ability to mimic the structure and function of extracellular matrix. Electrospinning is a simple technique to obtain nano-micro fibers with customized fiber topology and composition (FIGS. 33A and 33B). The chitosan electrospun nanofibers have recently been extensively studied due to the favorable properties of chitosan such as controllable biodegradation, good biocompatibility and high mechanical strength. Currently, chitosan can be electrospun from a solution of chitosan dissolved in either trifluoroacetic acid (TFA) or acetic acid (HAc). However, processes to remove residual acid and acid salts from the electrospun material generally resulted in a swelling of fibers and deterioration of the nano-fibrous structure. Crosslinking in combination with neutralization methods also had not been effective at preventing loss of nano-fibrous structure.

The current study aimed to improve and maintain nano-fibrous and porous structure of the electrospun membranes by introducing a new post electrospinning chemical treatment. Membrane thickness was tripled in this research in order to increase the general tearing strength. Scanning electron micrograph (SEM) examination (FIG. 33C) and transmission electron micrograph (TEM) examination (FIG. 33D) showed Fiber diameters of the triethanolamine/N-tert-butoxycarbonyl (TEA/t-BoC) treated membranes ranged from 40 nm to 130 nm while fiber diameters were not able to be determined for the Na2CO3 group. Membranes treated by TEA/tboc (FIG. 34A) exhibited more nano-scale fibrous structure than membranes treated by saturated Na2CO3 (FIGS. 35B-35D, as seen demonstrated in scanning electron micrographs. After immersion in PBS for 24 hours, membranes treated by TEA/tboc exhibited less than 30% swelling (FIG. 34B) and retained their nanofibrous structure, compared with membranes treated by Na2CO3 (FIGS. 35B-35D) or compared with the non-treated chitosan membrane (FIG. 35A). After soaking the TEA/tBoc treated membranes in water overnight, membranes still kept the porous structure. In both, the before and after water status, fibers kept diameters in the nanometer range (FIG. 35C). TEA/tBoC modified nanofiber membranes also well preserved their fibrous structure over 4 weeks in physiological solution compared with Na2CO3 treated membranes (FIG. 35D).

Chitosan membranes treated by TEA/tboc showed better nano-fiber morphology characteristics than membranes neutralized by saturated Na2CO3 solution before and after being soaked in PBS. Retention of the nanofibrous structure for guided tissue regeneration applications may be of benefit for enabling nutrient exchange between soft gingival tissue and bone compartments and for mimicking the natural nanofibrillar components of the extracellular matrix during regeneration.

Full text: Click here
Patent 2024
Acetic Acid Acids Bones Chitosan Electrons Environmental Biodegradation Extracellular Matrix Fibrosis Gingiva Guided Tissue Regeneration Hydrochloric acid Nutrients physiology Polymers Regeneration Retention (Psychology) Submersion TERT protein, human Tissue, Membrane Tissues Transmission, Communicable Disease triethanolamine Trifluoroacetic Acid Vision

Example 3

Recombinant Protein Purification

FIG. 5 shows the steps of one of the purifications carried out on the chimera. In the case of GRNLY, this process was shown in an earlier paper [Ibáñez, R., University of Zaragoza. 2015]. It can be seen in FIG. 5A that the P. Pastoris supernatant obtained after induction (lane 1) contains rather diluted proteins. After concentrating same with Pellicom, protein bands are not seen in the permeate (lane 3), but proteins that are much more concentrated than in the supernatant are seen in the concentrate (lane 2). After dialysis (lane 4), the band profile remains similar to the concentrate. Furthermore, protein bands are not seen in the buffer in which the dialysis bag (lane 5) was introduced. Upon addition of the nickel resin, the chimera binds to said resin as it has a histidine tag. After adding the resin (lane 6), the intensity of a band corresponding to a protein of about 40 kDa decreases with respect to the concentrate and dialysate. This band may correspond to the chimera. The fact that this band does not altogether disappear may indicate that the nickel resin was saturated. In the washes performed on the resin, particularly in the first wash (lane 7), it can be seen how the residues of other proteins are removed. Finally, after the elution of the nickel column, a major protein with a molecular weight of about 40 kDa corresponding to the molecular weight of the chimera (lane 11) is clearly observed. As shown in FIG. 5B, it was confirmed by means of immunoblot that this band of about 40 kDa corresponds to the chimera (lane 11). It is also confirmed that the resin was saturated because a band appears in the post-resin dialysis phase (lane 6).

FIG. 6 shows different elution fractions and the pooling of all of them with the exception of elution fraction 1. FIG. 6A shows several bands in the different elution fractions and in the total eluate. The band with the highest intensity has a molecular weight corresponding to the chimera. Furthermore, other bands having intermediate molecular weights are observed, which means that the chimera undergoes partial proteolysis. The band with the second highest intensity has a molecular weight of about 10 kDa, which corresponds to 9-kDa GRNLY, as its molecular weight increases since it is bound to a histidine tag. In FIG. 6B, it was confirmed by means of immunoblot that these bands of about 40 and 10 kDa correspond to the chimeric recombinant protein and to recombinant GRNLY, respectively.

Once the chimera is generated, its functionality must be assured, that is, on one hand the scFv still recognizes the CEA antigen, and on the other hand GRNLY is still cytotoxic.

Full text: Click here
Patent 2024
Antigens Buffers Chimera Chimeric Proteins, Recombinant Dialysis Dialysis Solutions GNLY protein, human Histidine Immunoblotting Nickel One-Step dentin bonding system Proteins Proteolysis Recombinant Proteins Resins, Plant Staphylococcal Protein A Vision
Not available on PMC !

Example 1

A renewable paraffinic product was produced by heavily cracking hydrodeoxygenation and isomerisation of feedstock mixture of vegetable and animal fat origin. This product was analysed using various analysis methods (Table 2).

TABLE 2
Analysed renewable paraffinic product.
AnalysisMethodUnitValue
Freezing pointIP529° C. −42.0
DensityASTM kg/m3753.0
D4052
Weighted average NM49012.0
carbon number
% carbon number 14-17NM490wt-%30.5
T10 (° C.) cut-off temperatureASTM D86° C. 168.5
T90 (° C.) cut-off temperatureASTM D86° C. 245.5
Final boiling pointASTM D86° C. 256.0

The analysed product in Table 2 fulfils the freezing point of jet fuel specification, but the freezing point is not exceptionally low.

Example 4

Another renewable paraffinic product produced by hydrodeoxygenation and isomerisation of another feedstock mixture of vegetable and animal fat origin is further directed to a fractionation unit. In the fractionation unit, the renewable paraffinic product is divided into two fractions. Lighter of the fractions containing 80 wt-% of the original renewable paraffinic product is re-analysed using various analysis methods (Table 5).

TABLE 5
Analysed renewable paraffinic product.
AnalysisMethodUnitValue
Freezing pointIP529° C.−50.9
DensityASTM kg/m3770.1
D4052
Weighted average NM49014.7
carbon number
% carbon number 14-17NM490wt-%73.6
T10 (° C.) cut-off temperatureASTM D86° C.191.9
T90 (° C.) cut-off temperatureASTM D86° C.276.6
Final boiling pointASTM D86° C.283.1

This product also fulfils all requirements of a high-quality renewable aviation fuels. From the analysis results it can be seen that despite the fact that the density of the paraffinic composition is over 768 kg/m3 (measured 770.1 kg/m3) the freezing point (measured −50.9° C.) is significantly lower than the freezing point of the product of comparative example 1.

It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.

Full text: Click here
Patent 2024
Animals Carbon-14 Carbon-17 Fractionation, Chemical Hydrocarbons jet fuel A Light Paraffin Vegetables Vision

Example 1

a. Materials and Methods

i. Vector Construction

1. Virus-Like Particle

As most broadly neutralizing HPV antibodies are derived from the highly conserved N-terminal region of L2, amino acids 14-122 of HPV16 L2 were used to create HBc VLPs. L2 with flanking linker regions was inserted into the tip of the a-helical spike of an HBc gene copy which was fused to another copy of HBc lacking the L2 insert. This arrangement allows the formation of HBc dimers that contain only a single copy of L2, increasing VLP stability (Peyret et al. 2015). This heterodimer is referred to as HBche-L2. A dicot plant-optimized HPV16 L2 coding sequence was designed based upon the sequence of GenBank Accession No. CAC51368.1 and synthesized in vitro using synthetic oligonucleotides by the method described (Stemmer et al., 1995). The plant-optimized L2 nucleotide sequence encoding residues 1-473 is posted at GenBank Accession No. KC330735. PCR end-tailoring was used to insert Xbal and SpeI sites flanking the L2 aa 14-122 using primers L2-14-Xba-F (SEQ ID NO. 1: CGTCTAGAGTCCGCAACCCAACTTTACAAG) and L2-122-Spe-R (SEQ ID NO. 2: G GGACTAGTTGGGGCACCAGCATC). The SpeI site was fused to a sequence encoding a 6His tag, and the resulting fusion was cloned into a geminiviral replicon vector (Diamos, 2016) to produce pBYe3R2K2Mc-L2(14-122)6H.

The HBche heterodimer VLP system was adapted from Peyret et al (2015). Using the plant optimized HBc gene (Huang et al., 2009), inventors constructed a DNA sequence encoding a dimer comprising HBc aa 1-149, a linker (G2S)5G (SEQ ID NO. 39), HBc aa 1-77, a linker GT(G4S)2 (SEQ ID NO. 40), HPV-16 L2 aa 14-122, a linker (GGS)2GSSGGSGG (SEQ ID NO. 41), and HBc aa 78-176. The dimer sequence was generated using multiple PCR steps including overlap extensions and insertion of BamHI and SpeI restriction sites flanking the L2 aa 14-122, using primers L2-14-Bam-F (SEQ ID NO. 3: CAGGATCCGCAACC CAACTTTACAAGAC) and L2-122-Spe-R (SEQ ID NO. 2). The HBche-L2 coding sequence was inserted into a geminiviral replicon binary vector pBYR2eK2M (FIG. 3), which includes the following elements: CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), CaMV 35S 3′ terminator (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

2. Recombinant Immune Complex

The recombinant immune complex (RIC) vector was adapted from Kim et al., (2015). The HPV-16 L2 (aa 14-122) segment was inserted into the BamHI and SpeI sites of the gene encoding humanized mAb 6D8 heavy chain, resulting in 6D8 epitope-tagged L2. The heavy chain fusion was inserted into an expression cassette linked to a 6D8 kappa chain expression cassette, all inserted into a geminiviral replicon binary vector (FIG. 3, RIC vector). Both cassettes contain CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

ii. Agroinfiltration of Nicotiana benthamiana Leaves

Binary vectors were separately introduced into Agrobacterium tumefaciens EHA105 by electroporation. The resulting strains were verified by restriction digestion or PCR, grown overnight at 30° C., and used to infiltrate leaves of 5- to 6-week-old N. benthamiana maintained at 23-25° C. Briefly, the bacteria were pelleted by centrifugation for 5 minutes at 5,000 g and then resuspended in infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid (MES), pH 5.5 and 10 mM MgSO4) to OD600=0.2, unless otherwise described. The resulting bacterial suspensions were injected by using a syringe without needle into leaves through a small puncture (Huang et al. 2004). Plant tissue was harvested after 5 DPI, or as stated for each experiment. Leaves producing GFP were photographed under UV illumination generated by a B-100AP lamp (UVP, Upland, CA).

iii. Protein Extraction

Total protein extract was obtained by homogenizing agroinfiltrated leaf samples with 1:5 (w:v) ice cold extraction buffer (25 mM sodium phosphate, pH 7.4, 100 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 10 mg/mL sodium ascorbate, 0.3 mg/mL PMSF) using a Bullet Blender machine (Next Advance, Averill Park, NY) following the manufacturer's instruction. To enhance solubility, homogenized tissue was rotated at room temperature or 4° C. for 30 minutes. The crude plant extract was clarified by centrifugation at 13,000 g for 10 minutes at 4° C. Necrotic leaf tissue has reduced water weight, which can lead to inaccurate measurements based on leaf mass. Therefore, extracts were normalized based on total protein content by Bradford protein assay kit (Bio-Rad) with bovine serum albumin as standard.

iv. SDS-PAGE and Western Blot

Clarified plant protein extract was mixed with sample buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.02% bromophenol blue) and separated on 4-15% polyacrylamide gels (Bio-Rad). For reducing conditions, 0.5M DTT was added, and the samples were boiled for 10 minutes prior to loading. Polyacrylamide gels were either transferred to a PVDF membrane or stained with Coomassie stain (Bio-Rad) following the manufacturer's instructions. For L2 detection, the protein transferred membranes were blocked with 5% dry milk in PBST (PBS with 0.05% tween-20) overnight at 4° C. and probed with polyclonal rabbit anti-L2 diluted 1:5000 in 1% PBSTM, followed by goat anti-rabbit horseradish peroxidase conjugate (Sigma). Bound antibody was detected with ECL reagent (Amersham).

v. Immunization of Mice and Sample Collection

All animals were handled in accordance to the Animal Welfare Act and Arizona State University IACUC. Female BALB/C mice, 6-8 weeks old, were immunized subcutaneously with purified plant-expressed L2 (14-122), HBche-L2 VLP, L2 RIC, or PBS mixed 1:1 with Imject® Alum (Thermo Scientific, Rockford, IL). In all treatment groups, the total weight of antigen was set to deliver an equivalent 5 μg of L2. Doses were given on days 0, 21, and 42. Serum collection was done as described (Santi et al. 2008) by submandibular bleed on days 0, 21, 42, and 63.

vi. Antibody Measurements

Mouse antibody titers were measured by ELISA. Bacterially-expressed L2 (amino acids 11-128) was bound to 96-well high-binding polystyrene plates (Corning), and the plates were blocked with 5% nonfat dry milk in PBST. After washing the wells with PBST (PBS with 0.05% Tween 20), the diluted mouse sera were added and incubated. Mouse antibodies were detected by incubation with polyclonal goat anti-mouse IgG-horseradish peroxidase conjugate (Sigma). The plate was developed with TMB substrate (Pierce) and the absorbance was read at 450 nm. Endpoint titers were taken as the reciprocal of the lowest dilution which produced an OD450 reading twice the background. IgG1 and IgG2a antibodies were measured with goat-anti mouse IgG1 or IgG2a horseradish peroxidase conjugate.

vii. Electron Microscopy

Purified samples of HBche or HBche-L2 were initially incubated on 75/300 mesh grids coated with formvar. Following incubation, samples were briefly washed twice with deionized water then negatively stained with 2% aqueous uranyl acetate. Transmission electron microscopy was performed with a Phillips CM-12 microscope, and images were acquired with a Gatan model 791 CCD camera.

viii. Statistical Analysis

The significance of vaccine treatments and virus neutralization was measured by non-parametric Mann-Whitney test using GraphPad prism software. Two stars (**) indicates p values <0.05. Three stars (***) indicates p values <0.001.

b. Design and Expression of HBc VLPs and RIC Displaying HPV16 L2

BeYDV plant expression vectors (FIG. 3) expressing either the target VLP HBche-L2, or L2 and HBche alone as controls, were agroinfiltrated into the leaves of N. benthamiana and analyzed for VLP production. After 4-5 days post infiltration (DPI), leaves displayed only minor signs of tissue necrosis, indicating that the VLP was well-tolerated by the plants (FIG. 4A). Leaf extracts analyzed by reducing SDS-PAGE showed an abundant band near the predicted size of 51 kDa for HBche-L2, just above the large subunit of rubisco (RbcL). HBche was detected around the predicted size of 38 kDa (FIG. 4B). Western blot probed with anti-L2 polyclonal serum detected a band for HBche-L2 at ˜51 kDa (FIG. 4B). These results indicate that this plant system is capable of producing high levels of L2-containing HBc VLP.

To express L2-containing MC, amino acids 14-122 of HPV16 L2 were fused with linker to the C-terminus of the 6D8 antibody heavy chain and tagged with the 6D8 epitope (Kim et al. 2015). A BeYDV vector (FIG. 3) expressing both the L2-fused 6D8 heavy chain and the light chain was agroinfiltrated into leaves of N. benthamiana and analyzed for RIC production. To create more homogenous human-type glycosylation, which has been shown to improve antibody Fc receptor binding in vivo, transgenic plants silenced for xylosyltransferase and fucosyltransferase were employed (Castilho and Steinkellner 2012). By western blot, high molecular weight bands >150 kDa suggestive of RIC formation were observed (FIG. 4C). Expression of soluble L2 RIC was lower than HBche-L2 due to relatively poor solubility of the RIC (FIG. 4C).

After rigorous genetic optimization, the N. benthamiana system is capable of producing very high levels of recombinant protein, up to 30-50% of the total soluble plant protein, in 4-5 days (Diamos et al. 2016). Using this system, we produced and purified milligram quantities of fully assembled and potently immunogenic HBc VLPs displaying HPV L2 through a simple one-step purification process (FIGS. 4A-4C and 6).

c. Purification and Characterization of HBche-L2 and L2 RIC

To assess the assembly of HBc-L2 VLP, clarified plant extracts containing either HBche-L2 or HBche were analyzed by sucrose gradient sedimentation. HBche-L2 sedimented largely with HBche, which is known to form VLP, though a small increase in density was observed with HBche-L2, perhaps due to the incorporation of L2 into the virus particle (FIG. 5A). To demonstrate particle formation, sucrose fractions were examined by electron microscopy. Both HBche and HBche-L2 formed ˜30 nm particles, although the appearance of HBche-L2 VLP suggested slightly larger, fuller particles (FIGS. 5C and 5D). As most plant proteins do not sediment with VLP, pooling peak sucrose fractions resulted in >95% pure HBche-L2 (FIG. 5B), yielding sufficient antigen (>3 mg) for vaccination from a single plant leaf.

L2 RIC was purified from plant tissue by protein G affinity chromatography. By SDS-PAGE, an appropriately sized band was visible >150 kDa that was highly pure (FIG. 5B). Western blot confirmed the presence of L2 in this band, indicating proper RIC formation (FIG. 5B). L2 RIC bound to human complement C1q receptor with substantially higher affinity compared to free human IgG standard, suggesting proper immune complex formation (FIG. 5E).

d. Mouse Immunization with HBche-L2 and L2 RIC

Groups of Balb/c mice (n=8) were immunized, using alum as adjuvant, with three doses each of 5 μg L2 delivered as either L2 alone, HBche-L2 VLP, L2 RIC, or a combination of half VLP and half RIC. VLP and RIC, alone or combined, greatly enhanced antibody titers compared to L2 alone by more than an order of magnitude at all time points tested (FIG. 6). After one or two doses, the combined VLP/RIC treatment group outperformed both the VLP or RIC groups, reaching mean endpoint titers of >200,000, which represent a 700-fold increase over immunization with L2 alone (FIG. 6). After the third dose, both the VLP and combined VLP/RIC groups reached endpoint titers >1,300,000, a 2-fold increase over the RIC alone group. To determine the antibody subtypes produced by each treatment group, sera were assayed for L2-binding IgG1 and IgG2a. All four groups produced predominately IgG1 (FIG. 7, note dilutions). However, RIC and especially VLP-containing groups had an elevated ratio of IgG2a:IgG1 (>3-fold) compared to L2 alone (FIG. 7).

In vitro neutralization of HPV16 pseudovirions showed that the VLP and RIC groups greatly enhanced neutralization compared to L2 alone (FIG. 5, p<0.001). Additionally, VLP and RIC combined further enhanced neutralization activity ($5-fold, p<0.05) compared to either antigen alone, supporting the strong synergistic effect of delivering L2 by both platforms simultaneously.

In this study, by displaying amino acids 11-128 on the surface of plant-produced HBc VLPs, L2 antibody titers as high as those seen with L1 vaccines were generated (FIG. 6). Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the other groups had much more homogenous antibody responses, especially the VLP-containing groups, which had no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2. Moreover, significant synergy of VLP and RIC systems was observed when the systems were delivered together, after one or two doses (FIG. 6). Since equivalent amounts of L2 were delivered with each dose, the enhanced antibody titer did not result from higher L2 doses. Rather, these data suggest that higher L2-specific antibody production may be due to augmented stimulation of L2-specific B cells by T-helper cells that were primed by RIC-induced antigen presenting cells. Although treatment with VLP and RIC alone reached similar endpoint titers as the combined VLP/RIC group after 3 doses, virus neutralization was substantially higher (>5-fold) in the combined group (FIG. 8). Together, these data indicate unique synergy exists when VLP and RIC are delivered together. Inventors have observed similarly significant synergistic enhancement of immunogenicity for a variety of other antigens.

Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the VLP and VLP/RIC groups had much more homogenous antibody responses, with no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2.

Fc gamma receptors are present on immune cells and strongly impact antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (Jefferis 2009). In mice, these interactions are controlled in part by IgG subtypes. IgG1 is associated with a Th2 response and has limited effector functions. By contrast, IgG2a is associated with a Th1 response and more strongly binds complement components (Neuberger and Raj ewsky 1981) and Fc receptors (Radaev 2002), enhancing effector functions and opsonophagocytosis by macrophages (Takai et al. 1994). Immunization with L2 alone was found to produce low levels of IgG2a, however immunization with RIC and VLP produced significant increases in IgG2a titers. VLP-containing groups in particular showed a 3-fold increase in the ratio of IgG2a to IgG1 antibodies (FIG. 7). Importantly, production of IgG2a is associated with successful clearance of a plethora of viral pathogens (Coutelier et al. 1988; Gerhard et al. 1997; Wilson et al. 2000; Markine-Goriaynoff and Coutelier 2002).

The glycosylation state of the Fc receptor also plays an important role in antibody function. Advances in glycoengineering have led to the development of transgenic plants with silenced fucosyl- and xylosyl-transferase genes capable of producing recombinant proteins with authentic human N-glycosylation (Strasser et al. 2008). Antibodies produced in this manner have more homogenous glycoforms, resulting in improved interaction with Fc gamma and complement receptors compared to the otherwise identical antibodies produced in mammalian cell culture systems (Zeitlin et al. 2011; Hiatt et al. 2014; Strasser et al. 2014; Marusic et al. 2017). As the known mechanisms by which RIC vaccines increase immunogenicity of an antigen depend in part on Fc and complement receptor binding, HPV L2 RIC were produced in transgenic plants with silenced fucosyl- and xylosyl-transferase. Consistent with these data, we found that L2 RIC strongly enhanced the immunogenicity of L2 (FIG. 6). However, yield suffered from insolubility of the RIC (FIG. 4C). We found that the 11-128 segment of L2 expresses very poorly on its own in plants and may be a contributing factor to poor L2 RIC yield. Importantly, we have produced very high yields of RIC with different antigen fusions. Thus, in some aspects, antibody fusion with a shorter segment of L2 could substantially improve the yield of L2 RIC.

e. Neutralization of HPV Pseudovirions

Neutralization of papilloma pseudoviruses (HPV 16, 18, and 58) with sera from mice immunized IP with HBc-L2 VLP and L2(11-128) showed neutralization of HPV 16 at titers of 400-1600 and 200-800, respectively (Table 1). More mice IP-immunized with HBc-L2 VLP had antisera that cross-neutralized HPV 18 and HPV 58 pseudoviruses, compared with mice immunized with L2(11-128). Anti-HBc-L2 VLP sera neutralized HPV 18 at titers of 400 and HPV 58 at titers ranging from 400-800 (Table 1), while anti-L2(11-128) sera neutralized HPV 18 at a titer of 200 and HPV 58 at a titer of 400 (Table 1). None of the sera from intranasal-immunized mice demonstrated neutralizing activity, consistent with lower anti-L2 titers for intranasal than for intraperitoneal immunized mice.

TABLE 1
L2-specific serum IgG and pseudovirus neutralization
titers from IP immunized mice
Neutralization of Pseudoviruses
ImmunogenSerum IgGHPV 16HPV 18HPV 58
HBc-L2>50,000 400
~70,0001600400400
>80,0001600400800
L2 (11-128)~8000 200
~12,000 400
~50,000 800200400

Full text: Click here
Patent 2024
3' Untranslated Regions 5' Untranslated Regions AA 149 Agrobacterium tumefaciens aluminum potassium sulfate aluminum sulfate Amino Acids Animals Animals, Transgenic Antibodies Antibody Formation Antigen-Presenting Cells Antigens B-Lymphocytes Bacteria Bromphenol Blue Buffers Cell Culture Techniques Cells Centrifugation Chromatography, Affinity Cloning Vectors Cold Temperature Combined Modality Therapy complement 1q receptor Complement Receptor Complex, Immune Complex Extracts Cytotoxicities, Antibody-Dependent Cell Cytotoxin Digestion DNA, A-Form DNA Sequence Edetic Acid Electron Microscopy Electroporation Enzyme-Linked Immunosorbent Assay Epitopes ethane sulfonate Fc Receptor Females Formvar Fucosyltransferase G-substrate Gamma Rays Genes Genes, vif Glycerin Goat Helix (Snails) Helper-Inducer T-Lymphocyte Homo sapiens Homozygote Horseradish Peroxidase Human papillomavirus 16 Human papillomavirus 18 Human Papilloma Virus Vaccine IGG-horseradish peroxidase IgG1 IgG2A Immune Sera Immunoglobulin Heavy Chains Immunoglobulins Immunologic Factors Institutional Animal Care and Use Committees Introns Inventors L2 protein, Human papillomavirus type 16 Light Macrophage Mammals Matrix Attachment Regions Mice, Inbred BALB C Microscopy Milk, Cow's Morpholinos Mus Necrosis Needles Nicotiana Oligonucleotide Primers Oligonucleotides Open Reading Frames Opsonophagocytosis Papilloma Pathogenicity Plant Development Plant Extracts Plant Leaves Plant Proteins Plants Plants, Transgenic polyacrylamide gels Polystyrenes polyvinylidene fluoride prisma Protein Glycosylation Proteins Punctures Rabbits Receptors, IgG Recombinant Proteins Replicon Reproduction Response, Immune Ribulose-Bisphosphate Carboxylase Large Subunit Satellite Viruses SDS-PAGE Serum Serum Albumin, Bovine Sodium Ascorbate Sodium Chloride sodium phosphate Specimen Collection Stars, Celestial Strains Sucrose Sulfate, Magnesium Syringes System, Immune Technique, Dilution Tissue, Membrane Tissues Transferase Transmission Electron Microscopy Triton X-100 Tromethamine Tween 20 Ultraviolet Rays uranyl acetate Vaccination Vaccines Vaccines, Recombinant Virion Viroids Virus Vision Western Blotting xylosyltransferase

Top products related to «Vision»

Sourced in United States, China, Japan, Italy, Germany, United Kingdom, Switzerland, France, Canada, Netherlands, Australia, Belgium, India
The Microplate reader is a laboratory instrument used to measure the absorbance or fluorescence of samples in a microplate format. It can be used to conduct various assays, such as enzyme-linked immunosorbent assays (ELISA), cell-based assays, and other biochemical analyses. The core function of the Microplate reader is to precisely quantify the optical properties of the samples in a multi-well microplate.
Sourced in United States, Germany, Italy, China, United Kingdom, Sao Tome and Principe, Macao, France, India, Switzerland, Japan, Poland, Spain, Belgium, Canada, Australia, Brazil, Ireland, Israel, Hungary, Austria, Singapore, Egypt, Czechia, Netherlands, Sweden, Finland, Saudi Arabia, Portugal
MTT is a colorimetric assay used to measure cell metabolic activity. It is a lab equipment product developed by Merck Group. MTT is a tetrazolium dye that is reduced by metabolically active cells, producing a colored formazan product that can be quantified spectrophotometrically.
Sourced in United States, China, Germany, Japan, United Kingdom, France, Australia, Switzerland, Ireland, Canada, India, Mongolia, Hong Kong
The Microplate reader is a versatile laboratory instrument used to measure and analyze the optical properties of samples in microplates. It is designed to quantify absorbance, fluorescence, or luminescence signals from various assays and applications.
Sourced in United States, China, Finland, Germany, Japan, United Kingdom, Spain, France, Italy, Australia, Sweden, Singapore, Canada, India, Denmark
The Microplate reader is a laboratory instrument designed to measure the absorbance, fluorescence, or luminescence of samples in a microplate format. It is a versatile tool used in various applications, such as enzyme-linked immunosorbent assays (ELISAs), cell-based assays, and drug discovery screens.
Sourced in United States, Germany, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, India, Canada, Switzerland, Japan, Australia, Spain, Poland, Belgium, Brazil, Czechia, Portugal, Austria, Denmark, Israel, Sweden, Ireland, Hungary, Mexico, Netherlands, Singapore, Indonesia, Slovakia, Cameroon, Norway, Thailand, Chile, Finland, Malaysia, Latvia, New Zealand, Hong Kong, Pakistan, Uruguay, Bangladesh
DMSO is a versatile organic solvent commonly used in laboratory settings. It has a high boiling point, low viscosity, and the ability to dissolve a wide range of polar and non-polar compounds. DMSO's core function is as a solvent, allowing for the effective dissolution and handling of various chemical substances during research and experimentation.
Sourced in United States, Japan, Germany, United Kingdom, China, Hungary, Singapore, Canada, Switzerland
Image-Pro Plus 6.0 is a comprehensive image analysis software package designed for scientific and industrial applications. It provides a wide range of tools for image capture, enhancement, measurement, analysis, and reporting.
Sourced in Japan, United States, China, Germany, United Kingdom
The Cell Counting Kit-8 is a colorimetric assay for the determination of cell viability and cytotoxicity. It utilizes a water-soluble tetrazolium salt that produces a water-soluble formazan dye upon reduction in the presence of an electron carrier. The amount of the formazan dye generated is directly proportional to the number of living cells.
Sourced in Japan, United States, China, Germany
CCK-8 is a cell counting kit used to measure cell viability and proliferation. It utilizes a water-soluble tetrazolium salt that is reduced by living cells, producing a colored formazan dye that can be quantified using a spectrophotometer. The amount of formazan dye produced is directly proportional to the number of living cells in the sample.
Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in United States, China, Japan, Canada, United Kingdom, Germany, Austria
The Microplate reader is a laboratory instrument designed to measure the absorbance, fluorescence, or luminescence of samples in a microplate format. It is a versatile and automated tool used for various applications in fields such as biochemistry, cell biology, and drug discovery.

More about "Vision"

Visual perception, eyesight, optical system, retina, optic nerve, visual cortex, visual processing, visual acuity, contrast sensitivity, color vision, depth perception, visual field, visual impairment, vision disorders, macular degeneration, glaucoma, cataracts, refractive errors, visual assistive technologies, microplate reader, MTT assay, DMSO, Image-Pro Plus 6.0, Cell Counting Kit-8 (CCK-8), TRIzol reagent.
Vision is the fundamental human sense that allows us to identify, locate, and understand the world around us.
This complex process involves the eye, optic nerve, and visual cortex of the brain.
Vision research explores the anatomy, physiology, and psychology of the visual system to advance our understanding and develop treatments for vision-related disorders.
Microplate readers, MTT assays, DMSO, and Image-Pro Plus 6.0 are common tools used in vision research, while the Cell Counting Kit-8 (CCK-8) and TRIzol reagent are valuable in cell-based studies.
By leveraging these insights, researchers can enhance the reproducibility and accuracy of their work, ultimately leading to improved vision care and assistive technologies.