MRI data were acquired at nine scanning sites. All sites operate Siemens scanners, including three TIM Trio systems, four Verio systems, one Skyra system, and one Prisma system.
The standard DELCODE MR protocol included a structural T1-weighted image, a resting state fMRI (including IR-EPI and a field map), a T2-weighted structural scan optimized for volumetric assessment of the medial temporal lobe acquired in oblique coronal orientation perpendicular to the longitudinal axis of the hippocampus, a task fMRI (scene novelty and encoding task), and a quantitative susceptibility weighted image. This protocol was used in eight out of the nine scanning sites. One of the sites did not have the provision to conduct the task fMRI and instead conducted a diffusion tensor imaging (DTI) protocol. At three sites participants also underwent an optional second day of scanning with DTI, a task fMRI to assess object and scene processing and mnemonic discrimination, and a T1-weighted FLASH sequence optimized to image the locus coeruleus.
For task fMRI, all sites were equipped with a high-resolution (1280 Px × 800 Px) 30-inch MR-compatible LCD screen (“Medres Optostim”). All monitors were calibrated and configured to maintain the distance, luminance, color, and contrast constant across sites. Responses during task fMRI were recorded at all sites with MR-compatible response buttons (CurrentDesign). All participants underwent vision correction with MR-compatible goggles (Medigoogle; Cambridge Research Systems) according to the same SOP for all MRI sites. Task fMRI scenario files were controlled with Presentation (Neurobehavioral Systems).
For quality assurance (QA) and assessment, the following steps were taken. The DZNE imaging network, headed by the Magdeburg DZNE site (iNET), qualified each MRI site with a traveling head measurement prior to the start of the study. DZNE iNET then provided every site with detailed SOPs for the implementation of each protocol. All radiographers who operate MRIs in the study underwent centralized training to implement the SOPs (i.e., subjects’ positioning in the MRI scanner, sequence preparation steps, image angulation, task-fMRI visual acuity checks and correction, participant instruction, and testing).
A small MRI-phantom built and designed by the American College of Radiology (ACR) is used to monitor the performance of the MR systems on a weekly basis. The phantom images are analyzed according to a published protocol [24 (
link)]. A custom-built holder was designed to maximize reproducibility in phantom positioning across all nine MRI sites.
For QA, every scan underwent a quality check for SOP conformity and scan quality by the DZNE iNET team (Magdeburg). To establish inclusion/exclusion criteria based on data-driven quantitative metrics, a Bayesian-based strategy is being developed which will use the current manual/semi-automatic QA information for training after processing the images using the pcp-qa package (
www.preprocessed-connectomes-project.org/quality-assessment-protocol/)). Details on individual MR sequences and the fMRI experiments will be reported together with results in subsequent publications.
Baseline MRI scans of 367 individuals were obtained from the initial 400 participants reported here. In addition, 117 datasets of the extended protocol were acquired.
Jessen F., Spottke A., Boecker H., Brosseron F., Buerger K., Catak C., Fliessbach K., Franke C., Fuentes M., Heneka M.T., Janowitz D., Kilimann I., Laske C., Menne F., Nestor P., Peters O., Priller J., Pross V., Ramirez A., Schneider A., Speck O., Spruth E.J., Teipel S., Vukovich R., Westerteicher C., Wiltfang J., Wolfsgruber S., Wagner M, & Düzel E. (2018). Design and first baseline data of the DZNE multicenter observational study on predementia Alzheimer’s disease (DELCODE). Alzheimer's Research & Therapy, 10, 15.