The largest database of trusted experimental protocols

Residency

Residency refers to the period of supervised, hands-on training that medical professionals undergo after completing their formal education.
This critical stage allows them to apply their knowledge in a clinical setting, develop essential skills, and prepare for independent practice.
Residency programs provide comprehensive training across various medical specialties, ensuring that future practitioners are equipped to deliver high-quality, evidence-based care.
During this time, residents work under the guidance of experienced physicians, gaining valuable experience in patient management, diagnostic procedures, and therapeutic interventions.
The residency period is marked by a commitment to continuous learning, professional development, and the pursuit of excellence in the medical field.
By successfully completing their residency, individuals demonstrate their readiness to assume the responsibilities of a practicing physician, making a meaningful contribution to the healthcare system and the well-being of their patients.
Residency is a pivotial step in the journey to becoming a competent, compassionate, and confident medical professional.

Most cited protocols related to «Residency»

The questionnaire consisted of two parts: demographics and KAP. Demographic variables included age, gender, marital status, education, occupation, and place of current residence (Hubei vs. other provinces of China).
According to guidelines for clinical and community management of COVID-19 by the National Health Commission of the People's Republic of China 10 ,11 , a COVID-19 knowledge questionnaire was developed by the authors. The questionnaire had 12 questions (Table 1): 4 regarding clinical presentations (K1-K4), 3 regarding transmission routes (K5-K7), and 5 regarding prevention and control (K8-K12) of COVID-19. These questions were answered on a true/false basis with an additional “I don't know” option. A correct answer was assigned 1 point and an incorrect/unknown answer was assigned 0 points. The total knowledge score ranged from 0 to 12, with a higher score denoting a better knowledge of COVID-19. The Cronbach's alpha coefficient of the knowledge questionnaire was 0.71 in our sample, indicating acceptable internal consistency 12 .
Attitudes towards COVID-19 were measured by 2 questions (A1-A2, Table 1) about the agreement on the final control of COVID-19 and the confidence in winning the battle against COVID-19. The assessment of respondents' practices was composed of 2 behaviors (P1-P2, Table 1): going to a crowded place and wearing a mask when going out in recent days.
Publication 2020
COVID 19 Gender Transmission, Communicable Disease
Beginning in 2005, the ARIC Study conducted continuous, retrospective surveillance of hospital discharges for HF for all residents age 55 years and older in four US communities: Forsyth County, North Carolina; the city of Jackson, Mississippi; eight northwest suburbs of Minneapolis, Minnesota; and Washington County, Maryland. In 2005, there were 31 hospitals serving the four ARIC communities. The combined population in 2005 for these regions was approximately 177,000 men and women 55 years of age or older. Because of the small number of hospitalizations in the sample among race/ethnic groups other than black or white (n=55), we categorized these as white for the purposes of these analyses.
Annual electronic discharge indices were obtained from all hospitals admitting residents from the four ARIC communities. Discharges meeting eligibility criteria were sampled from these files. A hospitalization was considered eligible for validation as a HF event based on its International Classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM) code, age, gender, race, and residence in the community surveillance area. Target primary or secondary hospital discharge diagnoses codes included: heart failure (428), rheumatic heart disease (398.91), hypertensive heart disease- with congestive heart failure (402.01, 402.11, 402.91), hypertensive heart disease and renal failure- with CHF (404.01, 404.03, 404.13, 404.91, 404.93), acute cor pulmonale (415.0), chronic pulmonary heart disease, unspecified (416.9), other primary cardiomyopathies (425.4), acute edema of lung, unspecified (518.4), dyspnea and respiratory abnormalities (786.0). Sampling probabilities were created to optimize variance estimates around event rate estimates with a pre-set maximum number of cases to be abstracted in 2005 of 1499 (See Supplemental Methods). This fixed number of abstractions was estimated and set based on a target number (n=500) of hospitalized events that could be investigated and validated considering available resources and time constraints. All analyses were weighted to account for the sampling probabilities.
Publication 2012
Cardiomyopathies, Primary Congenital Abnormality Cor Pulmonale Diagnosis Dyspnea Eligibility Determination Gender Heart Heart Diseases High Blood Pressures Hospitalization Kidney Failure Patient Discharge Pulmonary Edema Racial Groups Respiratory Rate Rheumatic Heart Disease Woman
Previous surveys on the psychological impacts of SARS and influenza outbreaks were reviewed [18 (link),21 (link),24 ]. Authors included additional questions related to the COVID-19 outbreak. The structured questionnaire consisted of questions that covered several areas: (1) demographic data; (2) physical symptoms in the past 14 days; (3) contact history with COVID-19 in the past 14 days; (4) knowledge and concerns about COVID-19; (5) precautionary measures against COVID-19 in the past 14 days; (6) additional information required with respect to COVID-19; (7) the psychological impact of the COVID-19 outbreak; and (8) mental health status.
Sociodemographic data were collected on gender, age, education, residential location in the past 14 days, marital status, employment status, monthly income, parental status, and household size. Physical symptom variables in the past 14 days included fever, chills, headache, myalgia, cough, difficulty in breathing, dizziness, coryza, sore throat, and persistent fever, as well as persistent fever and cough or difficulty breathing. Respondents were asked to rate their physical health status and state any history of chronic medical illness. Health service utilization variables in the past 14 days included consultation with a doctor in the clinic, admission to the hospital, being quarantined by a health authority, and being tested for COVID-19. Contact history variables included close contact with an individual with confirmed COVID-19, indirect contact with an individual with confirmed COVID-19, and contact with an individual with suspected COVID-19 or infected materials.
Knowledge about COVID-19 variables included knowledge about the routes of transmission, level of confidence in diagnosis, level of satisfaction of health information about COVID-19, the trend of new cases and death, and potential treatment for COVID-19 infection. Respondents were asked to indicate their source of information. The actual number of confirmed cases of COVID-19 and deaths in the city on the day of the survey were collected. Concern about COVID-19 variables included self and other family members contracting COVID-19 and the chance of surviving if infected.
Precautionary measures against COVID-19 variables included avoidance of sharing of utensils (e.g., chopsticks) during meals, covering mouth when coughing and sneezing, washing hands with soap, washing hands immediately after coughing, sneezing, or rubbing the nose, washing hands after touching contaminated objects, and wearing a mask regardless of the presence or absence of symptoms. The respondents were asked the average number of hours staying at home per day to avoid COVID-19. Respondents were also asked whether they felt too much -unnecessary worry had been made about the COVID-19 epidemic. Additional health information about COVID-19 needed by respondents included more information about symptoms after contraction of COVID-19, routes of transmission, treatment, prevention of the spread of COVID-19, local outbreaks, travel advice, and other measures imposed by other countries.
The psychological impact of COVID-19 was measured using the Impact of Event Scale-Revised (IES-R). The IES-R is a self-administered questionnaire that has been well-validated in the Chinese population for determining the extent of psychological impact after exposure to a public health crisis within one week of exposure [25 (link)]. This 22-item questionnaire is composed of three subscales and aims to measure the mean avoidance, intrusion, and hyperarousal [26 (link)]. The total IES-R score was divided into 0–23 (normal), 24–32 (mild psychological impact), 33–36 (moderate psychological impact), and >37 (severe psychological impact) [27 (link)].
Mental health status was measured using the Depression, Anxiety and Stress Scale (DASS-21) and calculations of scores were based on the previous study [28 (link)]. Questions 3, 5, 10, 13, 16, 17 and 21formed the depression subscale. The total depression subscale score was divided into normal (0–9), mild depression (10–12), moderate depression (13–20), severe depression (21–27), and extremely severe depression (28–42). Questions 2, 4, 7, 9, 15, 19, and 20 formed the anxiety subscale. The total anxiety subscale score was divided into normal (0–6), mild anxiety (7–9), moderate anxiety (10–14), severe anxiety (15–19), and extremely severe anxiety (20–42). Questions 1, 6, 8, 11, 12, 14, and 18 formed the stress subscale. The total stress subscale score was divided into normal (0–10), mild stress (11–18), moderate stress (19–26), severe stress (27–34), and extremely severe stress (35–42). The DASS has been demonstrated to be a reliable and valid measure in assessing mental health in the Chinese population [29 (link),30 (link)]. The DASS was previously used in research related to SARS [31 (link)].
Publication 2020
Anxiety Chills Chinese Common Cold COVID 19 diacetoxyscirpenol Diagnosis Disease, Chronic Disease Outbreaks Epidemics Family Member Feelings Fever Gender Headache Households Influenza Mental Health Myalgia Nose Oral Cavity Parent Physical Examination Physicians Respiratory Diaphragm Satisfaction Severe Acute Respiratory Syndrome Sore Throat Transmission, Communicable Disease
We will use a range of research designs to answer our key questions, as shown in Table 2. In the Inception phase we conducted a situational analysis of the mental health system in the selected district in each country. Using these data, we engaged in formative research to refine the substance and delivery of the proposed mental health care plan. This formative work has included three aspects. (1) We conducted a series of “theory of change” consultative workshops [22] . Theory of change is a structured participatory approach to the design and evaluation of interventions that provides “a systematic and cumulative study of the links between activities, outcomes, and contexts of the initiative” ([22] , p. 16). In the theory of change workshops, local stakeholders were asked to work with the research team to map out the steps in the causal pathway that lead to the intended outcome of the mental health care plan. This provided an opportunity for the research team and local stakeholders to interrogate the assumptions in each step of the proposed system change, as well as identify key indicators needed to monitor that change. (2) We conducted individual semi-structured interviews and focus group discussions to gather information from local stakeholders on the acceptability and feasibility of the proposed intervention packages. A wide range of stakeholders were interviewed, including national policy makers, district health managers, mental health specialists, primary care practitioners, community health workers, people living with the priority mental disorders, and local NGOs. Interview schedules addressed a range of topics, including experience and understanding of mental health problems, and participants' views on the draft mental health plans, training needs of primary care practitioners, task shifting, barriers to care, and health system requirements for integrating mental health into primary health care. (3) We developed a costing tool to estimate the resources required to implement the mental health care plan in each district, informed by local data and consultations.
Once the final mental health care plan has been approved by all stakeholders, training materials will be developed, the proposed interventions will be piloted, and the intervention will then be implemented and evaluated in each district. The primary quantitative methodologies for this evaluation are influenced by recent innovations for evaluating complex interventions implemented at the level of health systems or populations. These include community-based surveys to assess changes in coverage and stigma, facility-based surveys to assess changes in case detection, case studies of district level mental health systems, and studies of cohorts of individuals treated by the mental health care plans, to assess changes in mental health, social, and economic outcomes [23] (link)–[26] (link). All data will be disaggregated by gender, residence (rural/urban), and economic status to monitor equity of access to services and outcomes.
Publication 2012
Community Health Workers Delivery of Health Care Gender Infantile Neuroaxonal Dystrophy Innovativeness Mental Disorders Mental Health Policy Makers Population Group Primary Health Care Specialists Vaginal Diaphragm Workshops
We examined the unadjusted relationship between ADI percentile and 30-day rehospitalization, overall and by primary disease. Based upon the empiric ADI data, the most disadvantaged neighborhoods made up the top 15% of the distribution. To better assess for within-group differences, we divided this most disadvantaged 15% into three equally sized 5% groupings representing the third-most, the second-most and the most disadvantaged 5% of neighborhoods. The remainder of neighborhoods (85%) were grouped into a comparator category. We examined frequencies of patient and index hospital characteristics for each grouping.
We used logistic regression to assess the relationship between ADI grouping and 30-day rehospitalization. Next, to assess the full spectrum of ADI impact, we divided the distribution into 20 equally-sized neighborhood groupings of increasing ADI (5% each), and used logistic regression to assess the relationship between ADI grouping and rehospitalization. To investigate the within-hospital ADI effects (43 (link)), we employed conditional (44 (link)) and random effects logistic regression (45 (link), 46 (link)). To assess for differences in disease grouping and rural-urban effects, the relationship was assessed using logistic regression models stratified by disease grouping and RUCA code. Patient numbers in stratified analyses were smaller, so we analyzed the most disadvantaged 15% of neighborhoods as a single group.
Control variables were drawn from theoretical models of rehospitalization (47 (link)) and included patient HCC score tertile, comorbidities, length of stay, discharge to skilled nursing facility, age, gender, race, Medicaid status, disability status and RUCA code of primary residence; and index hospital medical school affiliation, for-profit status and discharge volume tertile. We calculated adjusted risk ratios, predicted probabilities, and 95% confidence intervals from these models on the basis of marginal standardization, as per methods by Kleinman and Norton (48 (link)) and by Localio (49 (link)). All models were estimated twice—once accounting for hospital-level and patient-level clustering, and again using robust estimates of the variance. Since no differences were noted, we present the more conservative robust estimates. All analyses were performed using SAS 9.3 (SAS Institute. SAS Statistical Software. 9.3 ed. Cary, NC: SAS Institute; 2011) and STATA 12 (StataCorp. Stata Statistical Software. 12.0 ed. College Station, TX: StataCorp LP; 2011).
Publication 2014
Disabled Persons Gender Patient Discharge Patient Readmission Patients

Most recents protocols related to «Residency»

Example 1

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 25° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 60 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles. The produced hydrotalcite particles were subjected to an elemental analysis, resulting in that Mg/Al (molar ratio)=2.1.

In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. 2003-048712, hydrotalcite particles were synthesized.

In 150 g/L of NaOH solution in an amount of 3 L were dissolved 90 g of metal aluminum to give a solution. After 399 g of MgO were added to the solution, 174 g of Na2CO3 were added thereto and they were reacted with each other for 6 hours with stirring at 95° C. As a result, hydrotalcite particles slurry was synthesized.

To the hydrotalcite particles slurry were added 30 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles. After the hydrotalcite particles slurry of which particles were surface treated was cooled, filtered and washed to give solid matters, a drying treatment was performed on the solid matters at 100° C. to give solid products of hydrotalcite particles.

Example 2

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 30° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 90 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.

Solid products of hydrotalcite particles were produced in a same manner as in Comparative Example 1 except that reaction conditions of 95° C. and 6 hours for synthesis of the hydrotalcite particles slurry in Comparative Example 1 were changed to hydrothermal reaction conditions of 170° C. and 6 hours.

Example 3

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 60° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 60 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.

In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. 2013-103854, hydrotalcite particles were synthesized.

Into a 5 L container were added 447.3 g of magnesium hydroxide (d50=4.0 μm) and 299.2 g of aluminum hydroxide (d50=8.0 μm), and water was added thereto to achieve a total amount of 3 L. They were stirred for 10 minutes to prepare slurry. The slurry had physical properties of d50=10 μm and d90=75 μm. Then, the slurry was subjected to wet grinding for 18 minutes (residence time) by using Dinomill MULTILAB (wet grinding apparatus) with controlling a slurry temperature during grinding by using a cooling unit so as not to exceed 40° C. As a result, ground slurry had physical properties of d50=1.0 μm, d90=3.5 μm, and slurry viscosity=5000 cP. Then, sodium hydrogen carbonate was added to 2 L of the ground slurry such that an amount of the sodium hydrogen carbonate was ½ mole with respect to 1 mole of the magnesium hydroxide. Water was added thereto to achieve a total amount of 8 L, and they were stirred for 10 minutes to give slurry. Into an autoclave was put 3 L of the slurry, and a hydrothermal reaction was caused at 170° C. for 2 hours. As a result, hydrotalcite particles slurry was synthesized.

To the hydrotalcite particles slum were added 6.8 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles. After solids were filtered by filtration, the filtrated cake was washed with 9 L of ion exchange water at 35° C. The filtrated cake was further washed with 100 mL of ion exchange water, and a conductance of water used for washing was measured. As a result, the conductance of this water was 50 μS/sm (25° C.). The water-washed cake was dried at 100° C. for 24 hours and was ground to give solid products of hydrotalcite particles.

Example 5

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 192 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 1.6 mol/L). The solution was stirred with keeping a temperature thereof at 30° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 90 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.

In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. H06-136179, hydrotalcite particles were synthesized.

To 1 L of water were added 39.17 g of sodium hydroxide and 11.16 g of sodium carbonate with stirring, and they were heated to 40° C. Then, to 500 mL of distilled water were added 61.28 g of magnesium chloride (19.7% as MgO), 37.33 g of aluminum chloride (20.5% as Al2O3), and 2.84 g of ammonium chloride (31.5% as NH3) such that a molar ratio of Mg to Al, Mg/Al, was 2.0 and a molar ratio of NH3 to Al, NH3/Al, was 0.35. As a result, an aqueous solution A was prepared. The aqueous solution A was gradually poured into a reaction system of the sodium hydroxide and the sodium carbonate. The reaction system after pouring had pH of 10.2. Moreover, a reaction of the reaction system was caused at 90° C. for about 20 hours with stirring to give hydrotalcite particles slurry.

To the hydrotalcite particles slurry were added 1.1 g of stearic acid, and a surface treatment was performed on particles with stirring to give a reacted suspension. The reacted suspension was subjected to filtration and water washing, and then the reacted suspension was subjected to drying at 70° C. The dried suspension was ground by a compact sample mill to give solid products of hydrotalcite particles.

Patent 2024
A-A-1 antibiotic Aluminum Aluminum Chloride aluminum oxide hydroxide Anabolism Bicarbonate, Sodium Carbon dioxide Chloride, Ammonium Filtration hydrotalcite Hydroxide, Aluminum Ion Exchange Japanese Magnesium Chloride Magnesium Hydroxide Molar Oxide, Magnesium Physical Processes Powder Resins, Plant sodium aluminate sodium carbonate Sodium Hydroxide Stainless Steel stearic acid Suby's G solution Viscosity

Example 1

252 grams of fluosilicic acid solution having a concentration of 32% by weight, which is a commercial fluosilicic acid, was fed into a stirred reaction vessel of 1 liter. The solution in the reaction vessel was stirred at a rate of 250 rpm. During stirring, 380 grams of an ammonium hydroxide solution having a concentration of 25% (wt) as NH3 was injected just below the liquid surface. The residence time of the reaction mixture was about 60 minutes and the final pH was about 8.3 while the temperature decreased from 61° to 28° C. The reaction mixture was subsequently filtered, the resulting filter cake washed with distilled water and dried at 110° C. Under these conditions the neutralization yield of fluorine was 81.24%. The chemical analysis and the X-Ray diffractometry of the dried cake showed the production of the ammonium silicofluoride and not the active silica.

Patent 2024
Acids Ammonium Ammonium Hydroxide Blood Vessel Fluoride, Calcium Fluorine Radiography Silicon Dioxide
Not available on PMC !

Example 2

80 grams of ammonium fluoride having a concentration of 8.47% by weight, recovered from the fluosilicic acid neutralization step, was fed into a reaction vessel provided with stirrer. The solution in the reaction vessel was stirred at rate of 250 rpm. During stirring, 71.4 grams of a suspension (19.5% wt) of calcium hydroxide having a concentration of 74.16% wt was fed to carry out a weight ratio of NH4F/CaO equivalent to 2.1. The residence time of the reaction mixture was about 30 minutes and the final pH was about 10 while the temperature decreased from 21° to 16° C. The reaction mixture was subsequently filtered, the resulting filter cake washed with distilled water and dried at 110° C. Under these conditions the precipitation yield of fluorine was 87.62%. The chemical analysis and the X-Ray diffractometry of the dried cake showed the obtaining of calcium fluoride.

Patent 2024
Acids ammonium fluoride Blood Vessel Fluoride, Calcium Fluorine Hydroxide, Calcium Radiography
Not available on PMC !

Example 1

An Arab light crude oil with an API gravity of 33.0 and a sulfur content of 1.6 wt. % was fractionated in a distillation column to form a light stream and a heavy stream. Properties of the feed crude oil stream and the resulting fractions (based on their percent composition in the crude oil fractions) are given in Table 1 below.

TABLE 1
Stream NameBoiling RangeNi (ppm)V (ppm)S (wt. %)N (ppm)
Hydrocarbon3.414.521.6444
Feed
Light StreamLess than<1<10.213
370° C.
Heavy StreamGreater than 4.414.21.4431
370° C.

Details of the un-hydrotreated heavy stream are shown below in Table 2, where the heavy stream is designated EX-1(A).

The same Arab light crude oil used in Example 1 was directly cracked in the same cracking reactor and under the same conditions as was used in Example 3(A), results are designated CE-1. Specifically, the temperature was 675° and the TOS was 75 seconds.

TABLE 4
3(A)3(B)3 (Combined)CE-1
(wt. %)(wt. %)(wt. %)(wt. %)
Dry Gas9.876.438.0610.80
Light Olefins39.1151.6743.4634.89
Ethylene11.8210.0610.6910.41
Propylene18.3425.7621.0516.51
Butylene8.9615.8411.727.96
Gasoline Range33.1224.6028.3824.21
Products
Coke4.926.615.5113.86
Conversion91.1494.4689.8687.38

As can be seen in Table 4, the combined yields of total light olefins from the present methods are significantly higher than the yields from the comparative methods. Further, each of examples 3(A), 3(B), and 3(Combined) show significantly decreased levels of coke formation relative to the comparative example CE-1.

Example 2

The heavy stream from Example 1 was hydrotreated in a three-stage hydrotreater. The reaction conditions were: a weighted average bed temperature of 400° C., a pressure of 150 bar, a liquid hourly space velocity (LHSV) of 0.5 h−1, an Hz/oil ratio 1200:1(v/v), an oil flowrate of 300 ml/h, and an H2 flowrate of 360 L/h.

The first stage of the hydrotreater used a KFR-22 catalyst from Albemarle Co. to accomplish hydro-demetallization (HDM). The second stage of the hydrotreater used a KFR-33 catalyst from Albemarle Co. to accomplish hydro-desulfurization (HDS). The third stage of the hydrotreater used a KFR-70 catalyst from Albemarle Co. to accomplish hydro-dearomatization (HDA). The first, second, and third stages were discrete beds placed atop one another in a single reaction zone. The heavy stream flowed downward to the first stage, then to the second stage, and then to the third stage. Properties of this hydrotreated heavy stream are shown in Table 2 below and are designated EX-2.

TABLE 2
EX-1(A)EX-2
Kinematic viscosity at 100° C. (mm2/s)6
Density (g/ml)0.9650.8402
Nitrogen (ppm)120868.5
Sulfur (wt. %)3.10.007
Ni (ppm)10<1
V (ppm)32<1
Aromatics68.625.6

The hydrotreated heavy stream from Example 2 was fed to the advanced cracking evaluation unit. A TOS of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 645° C. was used. Characterization of the product is given in Table 5 below.

TABLE 5
CE-13(B)
Temp. ° C.645645
T.O.S.(s)7575
Steaming Cond.810° C. for 6 hours
CAT/OIL6.488.00
Conversion (%)82.7794.46
Yields (wt. %)
H2 (wt. %)0.600.93
C1 (wt. %)4.823.71
C2 (wt. %)2.741.79
C2═ (wt. %)8.0710.06
C3 (wt. %)2.262.25
C3═ (wt. %)17.1625.76
iC4 (wt. %)0.671.58
nC4 (wt. %)0.550.69
t2C4═ (wt. %)2.393.92
1C4═ (wt. %)1.672.78
iC4═ (wt. %)3.596.01
c2C4═ (wt.%)1.903.14
1,3-BD (wt. %)0.010.63
Total Gas (wt. %)46.4463.25
Gasoline (wt. %)18.0924.60
LCO (wt. %)9.843.95
HCO (wt. %)7.381.59
Coke (wt. %)18.246.61
Groups (wt. %)
H2—C2 (dry gas)16.2416.49
C3—C4 (LPG)30.1946.77
C2═−C4═ (Light34.7952.30
olefins)
C3═+C426.7142.24
C4═ (Butenes)9.5516.48
Molar Ratios
mol/mol)
C2═/C23.156.03
C3═/C37.9711.97
C4═/C48.067.52
iC4═/C40.380.36
iC4═/iC45.513.94

As can be seen in Table 5, utilizing a hydrotreated heavy stream as the feed to the catalytic reactor results in higher conversion; greater yield of C2, C3, and C4 olefins; greater yield of gasoline; and significantly decreased coke formation, among other advantages.

Example 3

The respective fractions of Arab light crude were cracked at the conditions described below. A catalyst with the composition shown in Table 3 below as used in all of the reactions.

TABLE 3
ComponentWeight %Notes
ZSM-520Phosphorus impregnated at 7.5 wt. %
P2O5 on zeolite
USY21Lanthanum impregnated at 2.5 wt. %
La2O3 on zeolite
Alumina8Pural SB from Sasol
Clay49Kaolin
Silica2Added as colloidal silica Ludox TM-40

An Advanced Cracking Evaluation (ACE) unit was used to simulate a commercial FCC process. The reaction was run two times with fresh catalyst to simulate two separate FCC reaction zones in parallel.

Prior to each experiment, the catalyst is loaded into the reactor and heated to the desired reaction temperature. N2 gas is fed through the feed injector from the bottom to keep catalyst particles fluidized. Once the catalyst bed temperature reaches within ±2° C. of the reaction temperature, the reaction can begin. Feed is then injected for a predetermined time (time-on-stream (TOS)). The desired catalyst-to-feed ratio is obtained by controlling the feed pump. The gaseous product is routed to the liquid receiver, where C5+ hydrocarbons are condensed and the remaining gases are routed to the gas receiver. After catalyst stripping is over, the reactor is heated to 700° C., and nitrogen was replaced with air to regenerate the catalyst. During regeneration, the released gas is routed to a CO2 analyzer. Coke yield is calculated from the flue gas flow rate and CO2 concentration. The above process was repeated for each of Examples 3(A) and 3(B). The weight ratio of catalyst to hydrocarbons was 8.

It should be understood that time-on-stream (TOS) is directly proportional to residence time.

The light stream from Example 1 was fed to the advanced cracking evaluation unit. A time-on-stream (TOS) of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 675° C. was used.

The hydrotreated heavy stream from Example 2 was fed to the advanced cracking evaluation unit. A TOS of 75 seconds, a residence time of from 1 to 2 seconds, and a temperature of 645° C. was used. Characterization is shown in both Table 4 and Table 5.

The streams of Examples 3(A) and 3(B) were combined to form a single stream. The single stream simulates the output of processing a whole crude according to the methods of the present disclosure.

Example 3(Combined) is a weighted average of Examples 3(A) and 3(B). Example 3(A) represented 53 wt. % of Example 3(Combined). Example 3(B) represented 44 wt. % of Example 3 (Combined).

Patent 2024
Adjustment Disorders Alkenes Arabs butylene Catalysis Clay Cocaine Distillation ethylene GAS6 protein, human Gravity Hutterite cerebroosteonephrodysplasia syndrome Hydrocarbons Kaolin Lanthanum Light Molar Neoplasm Metastasis Nitrogen Oxide, Aluminum Petroleum phosphoric anhydride Phosphorus Pressure propylene Regeneration Silicon Dioxide Simulate composite resin Sulfur Viscosity Vision Zeolites

Example 1

An Arab light crude oil with an API gravity of 33.0 and a sulfur content of 1.6 wt. % was fractionated in a distillation column to form a light stream and a heavy stream. Properties of the feed crude oil stream and the resulting fractions (based on their wt. % composition in the crude oil) are given in Table 1 below.

TABLE 1
Boiling Ni VS N
Stream NameRange(ppm)(ppm)(wt. %)(ppm)
Hydrocarbon4.414.21.6444
Feed
Light StreamLess than <1<10.8136
540° C.
Heavy StreamGreater than4.414.20.8308
540° C.

The same Arab light crude oil used in Example 3 was directly cracked in the same cracking reactor and under the same conditions as was used in Example 3.

TABLE 4
EX-3CE-1
Constituent(wt. %)(wt. %)
H20.680.72
C16.476.86
C23.103.23
C2 = (ethylene)10.8510.41
C31.671.65
C3 = (propylene)18.2016.51
iC40.460.42
nC40.410.56
t2C4 =2.221.93
1C4 =1.651.40
iC4 =3.573.09
c2C4 =1.791.54
1,3-BD1.110.99
Butenes9.227.96
Total Gas52.1749.31
Dry Gas10.2410.80
Total Light Olefins38.2734.89
Gasoline27.9224.21
LCO8.439.43
HCO2.043.20
Coke9.4413.86
Total Gas + Coke61.6163.17

As can be seen in Table 4, the yield of total light olefins from the inventive EX-3 is significantly higher than the yield of light olefins in the comparative CE-1. Additionally, EX-3 shows significantly lower coke formation than the comparative CE-1.

Example 2

The heavy stream from Example 1 was hydrotreated in a three-stage hydrotreater. The reaction conditions were: a weighted average bed temperature of 400° C., a pressure of 150 bar, a liquid hourly space velocity (LHSV) of 0.5 h−1, an H2/oil ratio 1200:1 (v/v), an oil flowrate of 300 ml/h, and an H2 flowrate of 360 L/h.

The first stage of the hydrotreater used a KFR-22 catalyst from Albemarle Co. to accomplish hydro-demetallization (HDM). The second stage of the hydrotreater used a KFR-33 catalyst from Albemarle Co. to accomplish hydro-desulfurization (HDS). The third stage of the hydrotreater used a KFR-70 catalyst from Albemarle Co. to accomplish hydro-dearomatization (HDA). The first, second, and third stages were discrete beds placed atop one another in a single reaction zone. The heavy stream flowed downward to the first stage, then to the second stage, and then to the third stage. Properties of this hydrotreated heavy stream are shown in Table 2 below.

TABLE 2
Kinematic viscosity at 100° C.67.6 mm2/s
Density at 60° C.0.9 g/cm3
Sulfur (wt. %)0.36
Ni (ppm)1
V (ppm)3
Fe (ppm)<1
Na (ppm)<10

Example 3

A catalyst with the composition shown in Table 3 below as used in all of the reactions.

TABLE 3
ComponentWeight %Notes
ZSM-520Phosphorus impregnated at 7.5 wt. % P2O5
on zeolite
USY21Lanthanum impregnated at 2.5 wt. % La2O3
on zeolite
Alumina8Pural SB from Sasol
Clay49Kaolin
Silica2Added as colloidal silica Ludox TM-40

An Advanced Cracking Evaluation (ACE) unit was used to simulate a down-flow FCC reaction zone with multiple inlet points. The ACE unit emulates commercial FCC process.

Prior to each experiment, the catalyst is loaded into the reactor and heated to the desired reaction temperature. N2 gas is fed through the feed injector from the bottom to keep catalyst particles fluidized. Once the catalyst bed temperature reaches within ±2° C. of the reaction temperature, the reaction can begin. Feed is then injected for a predetermined time (time-on-stream (TOS)). The desired catalyst-to-feed ratio is obtained by controlling the feed pump. The gaseous product is routed to the liquid receiver, where C5+ hydrocarbons are condensed and the remaining gases are routed to the gas receiver. After catalyst stripping is over, the reactor is heated to 700° C., and nitrogen was replaced with air to regenerate the catalyst. During regeneration, the released gas is routed to a CO2 analyzer. Coke yield is calculated from the flue gas flow rate and CO2 concentration. The above process was repeated for each of Examples 3(A) and 3(B).

The light stream from Example 1 was combined with the hydrotreated heavy stream from Example 2 to form a combined feed stream. The combined feed stream was fed to the ACE unit. A time-on-stream (TOS) of 75 seconds and a temperature of 675° C. was used. Fresh catalyst was steamed deactivated at 810° C. for 6 hours to resemble the equilibrium catalyst in the actual process. The steam deactivated catalyst was used in this reaction. It should be understood that TOS is directly proportional to residence time.

Patent 2024
43-63 Adjustment Disorders Alkenes Arabs BD-38 butylene Catalysis Clay Cocaine Distillation ethylene Gravity Hydrocarbons Kaolin Lanthanum Light Neoplasm Metastasis Nitrogen Oxide, Aluminum Petroleum phosphoric anhydride Phosphorus Pressure propylene Regeneration Silicon Dioxide Steam Sulfur Viscosity Vision Zeolites

Top products related to «Residency»

Sourced in United States, Austria, Japan, Cameroon, Germany, United Kingdom, Canada, Belgium, Israel, Denmark, Australia, New Caledonia, France, Argentina, Sweden, Ireland, India
SAS version 9.4 is a statistical software package. It provides tools for data management, analysis, and reporting. The software is designed to help users extract insights from data and make informed decisions.
Sourced in United States, Austria, Japan, Belgium, United Kingdom, Cameroon, China, Denmark, Canada, Israel, New Caledonia, Germany, Poland, India, France, Ireland, Australia
SAS 9.4 is an integrated software suite for advanced analytics, data management, and business intelligence. It provides a comprehensive platform for data analysis, modeling, and reporting. SAS 9.4 offers a wide range of capabilities, including data manipulation, statistical analysis, predictive modeling, and visual data exploration.
Sourced in United States, Denmark, United Kingdom, Belgium, Japan, Austria, China
Stata 14 is a comprehensive statistical software package that provides a wide range of data analysis and management tools. It is designed to help users organize, analyze, and visualize data effectively. Stata 14 offers a user-friendly interface, advanced statistical methods, and powerful programming capabilities.
Sourced in United States, Denmark, Austria, United Kingdom, Japan, Canada
Stata version 14 is a software package for data analysis, statistical modeling, and graphics. It provides a comprehensive set of tools for data management, analysis, and reporting. Stata version 14 includes a wide range of statistical techniques, including linear regression, logistic regression, time series analysis, and more. The software is designed to be user-friendly and offers a variety of data visualization options.
Sourced in United States, Japan, United Kingdom, Germany, Belgium, Austria, Spain, France, Denmark, Switzerland, Ireland
SPSS version 20 is a statistical software package developed by IBM. It provides a range of data analysis and management tools. The core function of SPSS version 20 is to assist users in conducting statistical analysis on data.
Sourced in United States, Austria, United Kingdom, Cameroon, Belgium, Israel, Japan, Australia, France, Germany
SAS v9.4 is a software product developed by SAS Institute. It is a comprehensive data analysis and statistical software suite. The core function of SAS v9.4 is to provide users with tools for data management, analysis, and reporting.
Sourced in United States, United Kingdom, Austria, Denmark
Stata 15 is a comprehensive, integrated statistical software package that provides a wide range of tools for data analysis, management, and visualization. It is designed to facilitate efficient and effective statistical analysis, catering to the needs of researchers, analysts, and professionals across various fields.
Sourced in United States, Japan, Austria, Germany, United Kingdom, France, Cameroon, Denmark, Israel, Sweden, Belgium, Italy, China, New Zealand, India, Brazil, Canada
SAS software is a comprehensive analytical platform designed for data management, statistical analysis, and business intelligence. It provides a suite of tools and applications for collecting, processing, analyzing, and visualizing data from various sources. SAS software is widely used across industries for its robust data handling capabilities, advanced statistical modeling, and reporting functionalities.
Sourced in United States, United Kingdom, Denmark, Austria, Belgium, Spain, Australia, Israel
Stata is a general-purpose statistical software package that provides a comprehensive set of tools for data analysis, management, and visualization. It offers a wide range of statistical methods, including regression analysis, time series analysis, and multilevel modeling, among others. Stata is designed to facilitate the analysis of complex data sets and support the entire research process, from data import to report generation.
Sourced in United States, Denmark, Austria, United Kingdom, Japan
Stata version 15 is a data analysis and statistical software package. It provides a range of tools for data management, statistical analysis, and visualization. Stata version 15 supports a variety of data types and offers a comprehensive set of statistical procedures.

More about "Residency"

Residency is a critical stage in the journey of becoming a competent and compassionate medical professional.
It refers to the period of supervised, hands-on training that medical professionals undergo after completing their formal education.
During this pivotal time, residents work under the guidance of experienced physicians, gaining invaluable experience in patient management, diagnostic procedures, and therapeutic interventions.
Residency programs provide comprehensive training across various medical specialties, ensuring that future practitioners are equipped to deliver high-quality, evidence-based care.
This period is marked by a commitment to continuous learning, professional development, and the pursuit of excellence in the medical field.
Residents have the opportunity to apply their knowledge in a clinical setting, develop essential skills, and prepare for independent practice.
By successfully completing their residency, individuals demonstrate their readiness to assume the responsibilities of a practicing physician, making a meaningful contribution to the healthcare system and the well-being of their patients.
Residency is a crucial step in the journey to becoming a competent, compassionate, and confident medical professional.
Researchers can optimize their residency research protocols for reproducibility and accuracy using AI-driven comparisons from platforms like PubCompare.ai.
These tools help locate the best protocols and products from literature, pre-prints, and patents, streamlining the research process and unlocking new insights.
Whether you're using SAS version 9.4, Stata 14, SPSS version 20, or other statistical software, PubCompare.ai can be a valuable partner in your residency research success.