The largest database of trusted experimental protocols
> Procedures > Educational Activity > Training Programs

Training Programs

Discover the power of Training Programs - the comprehensive platform for elevating your professional development.
Explore a curated collection of top-tier training courses, workshops, and certification programs designed to enhance your skills and knowledge.
Optimize your learning experience with AI-driven recommendations tailored to your unique needs and career goals.
Unlock new opportunities and take your career to new heights with the expansive resources of Training Programs.
Enhance your expertise and stay ahead of the curve in your field.

Most cited protocols related to «Training Programs»

SpecificityFluorophoreCloneNote
CD3AF488UCHT110uL of antibody used
CD8APC-Cy7SK1
CD4AF700RPA-T4
CD57PEQA17A04
CD56APC5.1H11
CD103BV421Ber-ACT8
Integrin 7PEFIB504
CD49aAPCTS2/7BioLegend
CD43PECD43-10G7BioLegend
Gating conditions for each of the validation experiments are shown in Figures 4D and 4E.
Post sorting, samples were each split into quintuplicates, and then cleaned up with 2x SPRI. Samples were then brought into reverse transcription in an adaptation of SMARTseq2 (Picelli et al., 2014 (link)) and SCRB-seq (Soumillon et al., 2014 (link)) as described here: https://dx.doi.org/10.17504/protocols.io.nkgdctw.
The pooled library was sequenced on an Illumina Nextseq (50 R1, 8 index, 34 R2). Post base calling, samples were aligned using a wrapper for DropSeqTools against the human reference hg19 to generate RNA counts matrices.
To assess the agreement between single-cell datasets and bulk-sorted experiments, we examined the top DE genes separating our gated populations in the CITE-seq reference dataset. We next visualized the relative expression of these genes in the heatmaps in Figures 4D and 4E. The bulk-sorted populations exhibited highly concordant relative expression patterns for DE genes as we observed in CITE-seq data.
Full text: Click here
Publication 2021
Acclimatization Dietary Fiber DNA Library Gene Expression Genes Homo sapiens Immunoglobulins Population Group Reverse Transcription
hESC cultures were disaggregated using accutase for 20 minutes, washed using hESC media and pre-plated on gelatin for 1 hour at 37°C in the presence of ROCK inhibitor to remove MEFs. The nonadherent hESC were washed and plated on matrigel at a density of 10,000–25,000 cells/cm2 on matrigel (BD) coated dishes in MEF conditioned hESC media (CM) spiked with 10 ng/mL of FGF-2 and ROCK-inhibitor. Ideal cell density was found to be 18,000 cells/cm2. The ROCK inhibitor was withdrawn, and hESC were allowed to expand in CM for 3 days or until they were nearly confluent. The initial differentiation media conditions included knock out serum replacement (KSR) media with 10 nM TGF-b inhibitor (SB431542, Tocris) and 500 ng/mL of Noggin (R&D). Upon day 5 of differentiation, the TGF-b inhibitor was withdrawn and increasing amounts of N2 media (25%, 50%, 75%) was added to the KSR media every two days while maintaining 500 ng/mL of Noggin. For MS5 induction, established methods previously reported were used22 (link).
Publication 2009
4-(5-benzo(1,3)dioxol-5-yl-4-pyridin-2-yl-1H-imidazol-2-yl)benzamide accutase Cells Culture Media, Conditioned FGF10 protein, human Fibroblast Growth Factor 2 Gelatins Human Embryonic Stem Cells Hyperostosis, Diffuse Idiopathic Skeletal matrigel noggin protein Serum Transforming Growth Factor beta

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2010
Acclimatization Inclusion Bodies Neoplasm Metastasis Patients Physicians
To identify targeted ES cell clones, we developed a robust LR-PCR system that uses one set of reaction conditions for every targeted allele screened. In addition, we used an in-house primer generation program (“Primer Brain”) to generate genome-specific primers for the LR-PCR. Primers were selected from 2-kb blocks of sequence upstream of the 5′ homology arm (GF) and downstream of the 3′ homology arm (GR) and from a variable-sized region that contains the critical exon (EX). Primers were first extracted by a single-base-pair tiling of each region into 24- to 30-mers that end in G/C, have at least 10 G/C bases and have a melting temperature of at least 64 °C. Primer choice was weighted negatively to avoid both ‘runs’ of nucleotides (for example, ‘AAA’) and self-annealing ends. The top 100 high-scoring primers in each region were aligned against the current mouse genome (NCBIM37) with Exonerate software (http://www.ebi.ac.uk/~guy/exonerate) and were weighted negatively based on the number of alignments to the genome, with added negative weight given to alignments close to the 3′ end of primers. The two best-scoring primers from each block (GF1 and GF2; GR1 and GR2; EX1 and EX2) were grouped and primer combinations (for example, GF1 and EX1) were screened to eliminate pairs with a 4-bp overlap at their 3′ ends. The resulting GF, GR and EX primers were stored in an Oracle database.
Publication 2011
Alleles Base Pairing Brain Clone Cells Exons Genome GPER protein, human Mice, House Nucleotides Oligonucleotide Primers
It is well known that between- and within-person effects can be efficiently and unambiguously disaggregated within the multilevel model using the strategy of person-mean centering. Traditionally, the term centering is used to describe the rescaling of a random variable by deviating the observed values around the variable mean (e.g.,Aiken&West 1991 , pp. 28–48). For example, within the standard fixed-effects regression model, a predictor xi is centered via xi=xix¯ , where is the observed mean of xi, and xi is the mean-deviated rescaling of xi (see, e.g., Cohen et al. 2003 , p. 261). By definition, the mean of a centered variable is equal to zero, and this offers both interpretational and sometimes computational advantages in a number of modeling applications.
However, centering becomes more complex when considering TVCs. This is because multiple repeated measures are nested within each individual, and there are thus two means to consider: the grand mean of the TVC pooling over all time points and all individuals, and each person-specific mean pooling over all time points within individual. There are two ways that we can center the TVC.
First, we can deviate the TVC around the grand mean pooling over all individuals. Here, z¨ti=ztiz¯, where ti represents the grand mean centered TVC, zti is the observed TVC, and ‥ is the grand mean of zti pooling over all individuals and all time points. In other words, we simply compute the grand mean of the TVC and subtract this from each individual- and time-specific TVC score. Second, we can deviate the TVC around the person-specific mean of the TVC unique to each individual. Here, z˙ti=ztiz¯i, where żti represents the person-mean centered TVC, zti is again the observed TVC, and i is the person-specific mean for individual i. In other words, we subtract just the person-specific mean of the TVC from each of that same person’s time-specific TVC scores. We can use zti, żti, or ti as the level-1 predictor in Equation 8, and each is associated with a potentially different inference with respect to the disaggregation of effects.
Methods exist that allow for the disaggregation of the between-person and within-person effects using zti, żti, or ti (Kreft et al. 1995 , Raudenbush & Bryk 2002 ). However, direct estimates of these effects can be most easily obtained within the multilevel model by incorporating the person-mean centered TVC at level-1 (i.e., żti) and the person-mean at level-2 (i.e., i) (Raudenbush & Bryk 2002 , equation 5.41). Specifically, yti=β0i+β1iz˙ti+rtiβ0i=γ00+γ01z¯i+u0i,β1i=γ10 where all is defined as above. This requires three steps: We first compute the mean of the time-specific TVCs within each individual to obtain i; we then subtract that person-specific mean from each individual’s time-specific TVC values to obtain żti; finally, we use both i and żti as predictors in our multilevel model.
The reduced form equation for this model is yti=(γ00+γ01z¯i+γ10z˙ti)+(u0i+rti), where γ00 is the intercept (or grand mean), γ01 is a direct estimate of the between-person effect, and γ10 is a direct estimate of the within-person effect. Following our earlier hypothetical example, γ01 would capture the relation between average levels of anxiety and average levels of substance use pooling over individuals. In contrast, γ10 would capture the mean relation between a given person’s time-specific deviation in anxiety (relative to the overall level of anxiety) and the individual’s time-specific substance use.
The approach we outline above is currently regarded as best practice for the disaggregation of between-person and within-person effects in multilevel growth models (e.g., Raudenbush & Bryk 2002 , pp. 181-85; Singer & Willett 2003 , pp. 173-77), and there is no question that this is a valid method for accomplishing these goals. As we describe in greater detail below, however, the validity of this approach heavily relies on a set of specific conditions that may or may not be met in practice. Further, we have found that these conditions are rarely, if ever, discussed in either the quantitative or applied literatures. To better define these specific conditions, we next propose a more general framework for defining within-person and between-person effects. This framework both more formally establishes these expressions and allows us to explicate precisely under what conditions standard approaches are and are not valid.
Publication 2010
Anxiety Singer Substance Use

Most recents protocols related to «Training Programs»

Not available on PMC !

Example 1

InCl (1 eq.) was added to a Schlenk flask charged with LiCp(CH2)3NMe2 (11 mmol) in Et2O (50 mL). The reaction mixture was stirred overnight at room temperature. After filtration of the reaction mixture, the solvent was evaporated under reduced pressure to obtain a red oil. After distillation a yellow liquid final product was collected (mp˜5° C.). Various measurements were done to the final product. 1H NMR (C6D6, 400 MHz): δ 5.94 (t, 2H, Cp-H), 5.82 (t, 2H, Cp-H), 2.52 (t, 2H, N—CH2—), 2.21 (t, 2H, Cp-CH2—), 2.09 (s, 6H, N(CH3)2, 1.68 (q, 2H, C—CH2—C). Thermogravimetric (TG) measurement was carried out under the following measurement conditions: sample weight: 22.35 mg, atmosphere: N2 at 1 atm, and rate of temperature increase: 10.0° C./min. 97.2% of the compound mass had evaporated up to 250° C. (Residue <2.8%). T (50%)=208° C. Vacuum TG measurement was carried out under delivery conditions, under the following measurement conditions: sample weight: 5.46 mg, atmosphere: N2 at 20 mbar, and rate of temperature increase: 10.0° C./min. TG measurement was carried out under delivery conditions into the reactor (about 20 mbar). 50% of the sample mass is evaporated at 111° C.

Using In(Cp(CH2)3NMe2) synthesized in Example 1 as an indium precursor and H2O and O3 as reaction gases, indium oxide film may be formed on a substrate by ALD method under the following deposition conditions. First step, a cylinder filled with In(Cp(CH2)3NMe2) is heated to 90° C., bubbled with 100 sccm of N2 gas and the In(Cp(CH2)3NMe2) is introduced into a reaction chamber (pulse A). Next step, O3 generated by an ozone generator is supplied with 50 sccm of N2 gas and introduced into the reaction chamber (pulse B). Following each step, a 4 second purge step using 200 sccm of N2 as a purge gas was performed to the reaction chamber. 200 cycles were performed on a Si substrate having a substrate temperature of 150° C. in the reaction chamber at a pressure of about 1 torr. As a result, an indium oxide film will be obtained at approximately 150° C.

Example 2

Same procedure as Example 1 started from Li(CpPiPr2) was performed to synthesize In(CpPiPr2). An orange liquid was obtained. 1H NMR (C6D6, 400 MHz): δ 6.17 (t, 2H, Cp-H), 5.99 (t, 2H, Cp-H), 1.91 (sept, 2H, P—CH—), 1.20-1.00 (m, 12H, C—CH3).

Using In(CpPiPr2) synthesized in Example 2 as the indium precursor and H2O and O3 as the reaction gases, indium oxide film may be formed on a substrate by the ALD method under the following deposition conditions. First step, a cylinder filled with In(CpPiPr2) is heated to 90° C., bubbled with 100 sccm of N2 gas and the In(CpPiPr2) is introduced into a reaction chamber (pulse A). Next step, O3 generated by an ozone generator is supplied with 50 sccm of N2 gas and introduced into the reaction chamber (pulse B). Following each step, a 4 second purge step using 200 sccm of N2 as a purge gas was performed to the reaction chamber. 200 cycles were performed on the Si substrate having a substrate temperature of 150° C. in an ALD chamber at a pressure of about 1 torr. As a result, an indium oxide was obtained at 150° C.

Full text: Click here
Patent 2024
1H NMR Atmosphere Distillation Fever Filtration Indium indium oxide Obstetric Delivery Ozone Pressure Pulse Rate Solvents Vacuum

Example 14

Cephem Conjugates

Cephem acetal linked β-lactam antibiotic cannabinoid conjugate components are synthesized according to the following Scheme. The starting material [15690-38-7] is converted to a hydroxymethyl intermediate containing a side chain and protecting ester of choice as described in the literature (WO 96/04247). A cannabinoid (CBD) is converted to the O-chloromethyl intermediate via reported conditions (Bioorg. & Med. Chem., 26(2), 386-393; 2018; J. Amer. Chem. Soc., 136(26), 9260-9263; 2014; Faming Zhuanli Shenqing, 105037382, 11 Nov. 2015). The hydroxymethyl and O-chloromethyl intermediates are reacted under previously reported conditions (Tetrahedron, 60(12), 2771-2784; 2004) to generate the acetal link. Removal of the diphenylmethyl ester protecting group gives the product.

[Figure (not displayed)]

Carbacephem Conjugates

Carbacephem acetal linked β-lactam antibiotic cannabinoid conjugate components are synthesized according to the following Scheme. The starting material [177472-75-2] is converted to a hydroxymethyl intermediate containing a side chain and protecting ester of choice as described in the literature (WO 96/04247). A cannabinoid (CBD) is converted to the O-chloromethyl intermediate via reported conditions (Bioorg. & Med. Chem., 26(2), 386-393; 2018; J. Amer. Chem. Soc., 136(26), 9260-9263; 2014; Faming Zhuanli Shenqing, 105037382, 11 Nov. 2015). The hydroxymethyl and O-chloromethyl intermediates are reacted under previously reported conditions (Tetrahedron, 60(12), 2771-2784; 2004) to generate the acetal link. Removal of the diphenylmethyl ester protecting group gives the product.

[Figure (not displayed)]

Penem Conjugates

Penem acetal linked β-lactam antibiotic cannabinoid conjugate components are synthesized according to the following Scheme. A cannabinoid (CBD) is converted to its O-chloromethyl intermediate via reported conditions (Bioorg. & Med. Chem., 26(2), 386-393; 2018; J. Amer. Chem. Soc., 136(26), 9260-9263; 2014; Faming Zhuanli Shenqing, 105037382, 11 Nov. 2015). This intermediate is reacted with a hydroxymethyl penem [88585-78-8] under reported conditions (Tetrahedron, 60(12), 2771-2784; 2004) to form the acetal link. Removal of the silyl ether and allyl ester protecting groups under standard conditions gives the product.

[Figure (not displayed)]

Carbapenem Conjugates

Carbapenem acetal linked β-lactam antibiotic cannabinoid conjugate components are synthesized according to the following Scheme. A cannabinoid (CBD) is converted to its O-chloromethyl intermediate via reported conditions (Bioorg. & Med. Chem., 26(2), 386-393; 2018; J. Amer. Chem. Soc., 136(26), 9260-9263; 2014; Faming Zhuanli Shenqing, 105037382, 11 Nov. 2015). This intermediate is reacted with a hydroxymethyl carbapenem [118990-99-1] under reported conditions (Tetrahedron, 60(12), 2771-2784; 2004) to form the acetal link. Removal of the allyl protecting groups under standard conditions gives the product.

[Figure (not displayed)]

Full text: Click here
Patent 2024
Acetals Cannabinoids carbacephems Carbapenems Esters Ethers Monobactams Penem

Example 22

To a four-necked flask (1 L volume) equipped with stirring blades, a thermometer, a dropping funnel and a condenser tube, 500 mL of toluene, 30.6 g (0.11 mol) of 4,4′-(propane-2,2-diyl)bis(isocyanate-benzene), and 63.1 mg of p-methoxyphenol were added and dissolved. Next, 14.3 g (0.11 mol) of 2-hydroxyethyl methacrylate was weighed in a beaker, 150 mL of toluene was added, and the mixture was stirred thoroughly and transferred to a dropping funnel. The four-necked flask was immersed in an oil bath heated to 80° C., and 2-hydroxyethyl methacrylate was added dropwise with stirring. After completion of the dropwise addition, the reaction was continued while maintaining the temperature of an oil bath for 24 hours, leading to aging. After completion of the aging, the four-necked flask was removed from the oil bath and the reaction product was returned to room temperature, and then HPLC and FT-IR measurements were performed. Analysis conditions of the HPLC measurement are as follows: a column of ZORBAX-ODS, acetonitrile/distilled water of 7/3, a flow rate of 0.5 mL/min, a multi-scanning UV detector, an RI detector and an MS detector. The FT-IR measurement was performed by an ATR method. As a result of the HPLC measurement, the raw materials 4,4′-(propane-2,2-diyl)bis(isocyanate-benzene) and 2-hydroxyethyl methacrylate disappeared and a new peak of 2-(((4-(2-(4-isocyanate-phenyl)propane-2-yl)phenyl)carbamoyl)oxy)ethyl methacrylate (molecular weight 408.45) was confirmed. As a result of FT-IR measurement, a decrease in isocyanate absorption intensity at 2280-2250 cm−1 and a disappearance of hydroxy group absorption near 3300 cm−1 were confirmed, and a new absorption attributed to urethane group at 1250 cm−1 was confirmed. Next, to a toluene solution containing 40.8 g (0.10 mol) of the precursor compound synthesized in the above procedure, 22.2 g (0.10 mol) of 3-(triethoxysilyl)propan-1-ol was added dropwise with stirring. The reaction was performed with the immersion in an oil bath heated to 80° C. in the same way as in the first step. After completion of the dropwise addition, the reaction was continued for 24 hours, leading to aging. After completion of the aging, HPLC and FT-IR measurements were performed. As a result of the HPLC measurement, the peaks of the raw materials 2-(((4-(2-(4-isocyanate-phenyl)propane-2-yl)phenyl)carbamoyl)oxy)ethyl methacrylate and 3-(triethoxysilyl)propan-1-ol disappeared and 2-(((4-(2-(4-(((3-(triethoxysilyl)propoxy)carbonyl)amino)phenyl)propan-2-yl)phenyl)carbamoyl)oxy)ethyl methacrylate (molecular weight 630.81) was confirmed. As a result of FT-IR measurement, a disappearance of isocyanate absorption at 2280-2250 cm−1 and a disappearance of hydroxy group absorption near 3300 cm−1 were confirmed. The chemical structure formula of the compound synthesized in this synthetic example are described below.

[Figure (not displayed)]

Full text: Click here
Patent 2024
2-hydroxyethyl methacrylate acetonitrile Anabolism Bath Benzene ethylmethacrylate High-Performance Liquid Chromatographies Isocyanates Propane Silanes Submersion Thermometers Toluene Urethane

Example 1

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 25° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 60 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles. The produced hydrotalcite particles were subjected to an elemental analysis, resulting in that Mg/Al (molar ratio)=2.1.

In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. 2003-048712, hydrotalcite particles were synthesized.

In 150 g/L of NaOH solution in an amount of 3 L were dissolved 90 g of metal aluminum to give a solution. After 399 g of MgO were added to the solution, 174 g of Na2CO3 were added thereto and they were reacted with each other for 6 hours with stirring at 95° C. As a result, hydrotalcite particles slurry was synthesized.

To the hydrotalcite particles slurry were added 30 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles. After the hydrotalcite particles slurry of which particles were surface treated was cooled, filtered and washed to give solid matters, a drying treatment was performed on the solid matters at 100° C. to give solid products of hydrotalcite particles.

Example 2

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 30° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 90 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.

Solid products of hydrotalcite particles were produced in a same manner as in Comparative Example 1 except that reaction conditions of 95° C. and 6 hours for synthesis of the hydrotalcite particles slurry in Comparative Example 1 were changed to hydrothermal reaction conditions of 170° C. and 6 hours.

Example 3

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 96 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 0.8 mol/L). The solution was stirred with keeping a temperature thereof at 60° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 60 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.

In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. 2013-103854, hydrotalcite particles were synthesized.

Into a 5 L container were added 447.3 g of magnesium hydroxide (d50=4.0 μm) and 299.2 g of aluminum hydroxide (d50=8.0 μm), and water was added thereto to achieve a total amount of 3 L. They were stirred for 10 minutes to prepare slurry. The slurry had physical properties of d50=10 μm and d90=75 μm. Then, the slurry was subjected to wet grinding for 18 minutes (residence time) by using Dinomill MULTILAB (wet grinding apparatus) with controlling a slurry temperature during grinding by using a cooling unit so as not to exceed 40° C. As a result, ground slurry had physical properties of d50=1.0 μm, d90=3.5 μm, and slurry viscosity=5000 cP. Then, sodium hydrogen carbonate was added to 2 L of the ground slurry such that an amount of the sodium hydrogen carbonate was ½ mole with respect to 1 mole of the magnesium hydroxide. Water was added thereto to achieve a total amount of 8 L, and they were stirred for 10 minutes to give slurry. Into an autoclave was put 3 L of the slurry, and a hydrothermal reaction was caused at 170° C. for 2 hours. As a result, hydrotalcite particles slurry was synthesized.

To the hydrotalcite particles slum were added 6.8 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles. After solids were filtered by filtration, the filtrated cake was washed with 9 L of ion exchange water at 35° C. The filtrated cake was further washed with 100 mL of ion exchange water, and a conductance of water used for washing was measured. As a result, the conductance of this water was 50 μS/sm (25° C.). The water-washed cake was dried at 100° C. for 24 hours and was ground to give solid products of hydrotalcite particles.

Example 5

In a 2 L stainless steel container, 730 g of aluminum hydroxide powder (commercially available from KANTO CHEMICAL CO., INC., Cica special grade) were added into 1110 mL of 48% sodium hydroxide solution (commercially available from KANTO CHEMICAL CO., INC., Cica special grade), and they were stirred at 124° C. for 1 hour to give a sodium aluminate solution (First Step).

After the sodium aluminate solution was cooled to 80° C., ion exchange water was added into the sodium aluminate solution to achieve a total amount of 1500 mL.

After 192 mL of the sodium aluminate solution were separated into a 1 L stainless steel container, pure water was added into the solution to achieve a total amount of 730 mL (concentration of the sodium aluminate solution: 1.6 mol/L). The solution was stirred with keeping a temperature thereof at 30° C., and the solution was aerated with carbon dioxide in an aeration amount of 0.7 L/min. for 90 minutes to give adjusted aluminum hydroxide slurry (low-crystallinity aluminum compound=pseudo-boehmite) (Second Step).

Separately, 49.5 g of magnesium oxide powder (commercially available from KANTO CHEMICAL CO., INC., special grade) were added to 327 mL of pure water, and they were stirred for 1 hour to give magnesium oxide slurry.

In a 1.5 L stainless steel container, the magnesium oxide slurry and the adjusted aluminum hydroxide slurry were added into 257 mL of pure water, and they were stirred at 55° C. for 90 minutes to cause a first-order reaction. As a result, a reactant containing hydrotalcite nuclear particles was prepared (Third Step).

Then, pure water was added to the reactant to give a solution in a total amount of 1 L. The solution was put into a 2 L autoclave, and a hydrothermal synthesis was performed at 160° C. for 7 hours. As a result, hydrotalcite particles slurry was synthesized (Fourth Step).

To the hydrotalcite particles slurry were added 4.3 g of stearic acid (3 parts by mass with respect to 100 parts by mass of hydrotalcite particles) with keeping a temperature of the hydrotalcite particles slurry at 95° C. to perform a surface treatment on particles (Fifth Step). After the hydrotalcite particles slurry of which particles were surface treated was filtered and washed, a drying treatment was performed at 100° C. to give solid products of hydrotalcite particles.

In accordance with a method of Example 1 described in Japanese Laid-Open Patent Publication No. H06-136179, hydrotalcite particles were synthesized.

To 1 L of water were added 39.17 g of sodium hydroxide and 11.16 g of sodium carbonate with stirring, and they were heated to 40° C. Then, to 500 mL of distilled water were added 61.28 g of magnesium chloride (19.7% as MgO), 37.33 g of aluminum chloride (20.5% as Al2O3), and 2.84 g of ammonium chloride (31.5% as NH3) such that a molar ratio of Mg to Al, Mg/Al, was 2.0 and a molar ratio of NH3 to Al, NH3/Al, was 0.35. As a result, an aqueous solution A was prepared. The aqueous solution A was gradually poured into a reaction system of the sodium hydroxide and the sodium carbonate. The reaction system after pouring had pH of 10.2. Moreover, a reaction of the reaction system was caused at 90° C. for about 20 hours with stirring to give hydrotalcite particles slurry.

To the hydrotalcite particles slurry were added 1.1 g of stearic acid, and a surface treatment was performed on particles with stirring to give a reacted suspension. The reacted suspension was subjected to filtration and water washing, and then the reacted suspension was subjected to drying at 70° C. The dried suspension was ground by a compact sample mill to give solid products of hydrotalcite particles.

Full text: Click here
Patent 2024
A-A-1 antibiotic Aluminum Aluminum Chloride aluminum oxide hydroxide Anabolism Bicarbonate, Sodium Carbon dioxide Chloride, Ammonium Filtration hydrotalcite Hydroxide, Aluminum Ion Exchange Japanese Magnesium Chloride Magnesium Hydroxide Molar Oxide, Magnesium Physical Processes Powder Resins, Plant sodium aluminate sodium carbonate Sodium Hydroxide Stainless Steel stearic acid Suby's G solution Viscosity

Example 1

Cephem Conjugates

Cephem ether linked β-lactam antibiotic cannabinoid conjugate components are synthesized according to the following Scheme. The CAS numbers for the two key building blocks is shown. Reaction conditions follow standard conditions for amine acylation in the first step to attach the cephem side chain, for alkylation of a phenol group of a cannabinoid in the second step with optional use of a catalyst or enhancer such as NaI, followed by standard removal of the p-methoxybenzyl protecting group in the third step to furnish the product. A di-alkylated product may also be obtained.

[Figure (not displayed)]

Carbacephem Conjugates

Carbacephem ether linked β-lactam antibiotic cannabinoid conjugate components are synthesized according to the following Scheme. The general starting material [177472-75-2] was reported in racemic form as [54296-34-3] (Journal of the American Chemical Society (1974), 96(24), 7584) and is elaborated to the iodide intermediate after installing a side chain of choice using a previously reported process (WO 96/04247). Alkylation of CBD with the iodide followed by deprotection, both steps under standard conditions, provides the desired product.

[Figure (not displayed)]

Penem Conjugates

Penem ether linked β-lactam antibiotic cannabinoid conjugate components are synthesized according to the following Scheme. The starting material [145354-22-9], prepared as reported (Journal of Organic Chemistry, 58(1), 272-4; 1993), is reacted with CBD under standard alkylating conditions. The silyl ether TBS protecting group is then removed followed by deallylation under known conditions to give the desired product.

[Figure (not displayed)]

Carbapenem Conjugates

Carbapenem ether linked β-lactam antibiotic cannabinoid conjugate components are synthesized according to the following Scheme. The starting material [136324-03-3] is reacted with CBD under standard alkylating conditions. The silyl ether TES protecting group is then removed followed by removal of the p-methoxybenzyl ester protecting group under known conditions to give the desired product.

[Figure (not displayed)]

Full text: Click here
Patent 2024
Acylation Adjustment Disorders Alkylation Amines Cannabinoids carbacephems Carbapenems Esters Ethers Iodides Monobactams Penem Phenol

Top products related to «Training Programs»

Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, China, Japan, Germany, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Netherlands, Belgium, Lithuania, Denmark, Singapore, New Zealand, India, Brazil, Argentina, Sweden, Norway, Austria, Poland, Finland, Israel, Hong Kong, Cameroon, Sao Tome and Principe, Macao, Taiwan, Province of China, Thailand
TRIzol reagent is a monophasic solution of phenol, guanidine isothiocyanate, and other proprietary components designed for the isolation of total RNA, DNA, and proteins from a variety of biological samples. The reagent maintains the integrity of the RNA while disrupting cells and dissolving cell components.
Sourced in United States, China, United Kingdom, Germany, France, Australia, Canada, Japan, Italy, Switzerland, Belgium, Austria, Spain, Israel, New Zealand, Ireland, Denmark, India, Poland, Sweden, Argentina, Netherlands, Brazil, Macao, Singapore, Sao Tome and Principe, Cameroon, Hong Kong, Portugal, Morocco, Hungary, Finland, Puerto Rico, Holy See (Vatican City State), Gabon, Bulgaria, Norway, Jamaica
DMEM (Dulbecco's Modified Eagle's Medium) is a cell culture medium formulated to support the growth and maintenance of a variety of cell types, including mammalian cells. It provides essential nutrients, amino acids, vitamins, and other components necessary for cell proliferation and survival in an in vitro environment.
Sourced in United States, Germany, United Kingdom, China, Canada, France, Japan, Australia, Switzerland, Israel, Italy, Belgium, Austria, Spain, Gabon, Ireland, New Zealand, Sweden, Netherlands, Denmark, Brazil, Macao, India, Singapore, Poland, Argentina, Cameroon, Uruguay, Morocco, Panama, Colombia, Holy See (Vatican City State), Hungary, Norway, Portugal, Mexico, Thailand, Palestine, State of, Finland, Moldova, Republic of, Jamaica, Czechia
Penicillin/streptomycin is a commonly used antibiotic solution for cell culture applications. It contains a combination of penicillin and streptomycin, which are broad-spectrum antibiotics that inhibit the growth of both Gram-positive and Gram-negative bacteria.
Sourced in Germany, United States, United Kingdom, Netherlands, Spain, Japan, Canada, France, China, Australia, Italy, Switzerland, Sweden, Belgium, Denmark, India, Jamaica, Singapore, Poland, Lithuania, Brazil, New Zealand, Austria, Hong Kong, Portugal, Romania, Cameroon, Norway
The RNeasy Mini Kit is a laboratory equipment designed for the purification of total RNA from a variety of sample types, including animal cells, tissues, and other biological materials. The kit utilizes a silica-based membrane technology to selectively bind and isolate RNA molecules, allowing for efficient extraction and recovery of high-quality RNA.
Sourced in United States, Germany, China, Japan, United Kingdom, Canada, France, Italy, Australia, Spain, Switzerland, Belgium, Denmark, Netherlands, India, Ireland, Lithuania, Singapore, Sweden, Norway, Austria, Brazil, Argentina, Hungary, Sao Tome and Principe, New Zealand, Hong Kong, Cameroon, Philippines
TRIzol is a monophasic solution of phenol and guanidine isothiocyanate that is used for the isolation of total RNA from various biological samples. It is a reagent designed to facilitate the disruption of cells and the subsequent isolation of RNA.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Australia, Japan, Switzerland, Italy, Belgium, Israel, Austria, Spain, Netherlands, Poland, Brazil, Denmark, Argentina, Sweden, New Zealand, Ireland, India, Gabon, Macao, Portugal, Czechia, Singapore, Norway, Thailand, Uruguay, Moldova, Republic of, Finland, Panama
Streptomycin is a broad-spectrum antibiotic used in laboratory settings. It functions as a protein synthesis inhibitor, targeting the 30S subunit of bacterial ribosomes, which plays a crucial role in the translation of genetic information into proteins. Streptomycin is commonly used in microbiological research and applications that require selective inhibition of bacterial growth.
Sourced in United States, United Kingdom, Germany, China, France, Canada, Japan, Australia, Switzerland, Italy, Israel, Belgium, Austria, Spain, Brazil, Netherlands, Gabon, Denmark, Poland, Ireland, New Zealand, Sweden, Argentina, India, Macao, Uruguay, Portugal, Holy See (Vatican City State), Czechia, Singapore, Panama, Thailand, Moldova, Republic of, Finland, Morocco
Penicillin is a type of antibiotic used in laboratory settings. It is a broad-spectrum antimicrobial agent effective against a variety of bacteria. Penicillin functions by disrupting the bacterial cell wall, leading to cell death.
Sourced in United States, Austria, Canada, Belgium, United Kingdom, Germany, China, Japan, Poland, Israel, Switzerland, New Zealand, Australia, Spain, Sweden
Prism 8 is a data analysis and graphing software developed by GraphPad. It is designed for researchers to visualize, analyze, and present scientific data.
Sourced in United States, United Kingdom, Canada, China, Germany, Japan, Belgium, Israel, Lao People's Democratic Republic, Italy, France, Austria, Sweden, Switzerland, Ireland, Finland
Prism 6 is a data analysis and graphing software developed by GraphPad. It provides tools for curve fitting, statistical analysis, and data visualization.

More about "Training Programs"

Discover the power of Professional Development Programs - the comprehensive platform for elevating your career growth.
Explore a curated collection of top-tier training courses, workshops, and certification programs designed to enhance your skills, knowledge, and expertise.
Optimize your learning journey with AI-driven recommendations tailored to your unique needs and career goals.
Unlock new opportunities and propel your career forward with the expansive resources of Professional Development Programs.
Enhance your expertise and stay ahead of the curve in your field with a wide range of programs covering topics such as FBS (Fetal Bovine Serum), TRIzol reagent, DMEM (Dulbecco's Modified Eagle Medium), Penicillin/Streptomycin, RNeasy Mini Kit, TRIzol, Streptomcyin, Penicillin, Prism 8, and Prism 6.
Leverage the power of these cutting-edge tools and methodologies to elevate your research, laboratory techniques, and overall professional capabilities.
Embark on a transformative learning experience that caters to your specific interests and career aspirations.
Whether you're seeking to upskill, pivot, or specialize, Professional Development Programs offers a comprehensive range of options to propel you forward.
Enjoy a seamless, AI-powered learning experience that provides personalized recommendations and insights to optimize your growth.
Don't settle for ordinary - unlock your full potential and take your career to new heights with the expansive resources and guidance of Professional Development Programs.
Ehnance your expertise, stay ahead of the curve, and unlock new opportuinties today.