Step 2 starts with assessing the quality of the numerator of the coverage indicator by analysing completeness of reporting and consistency over time. High levels of reporting (over 80% of health facilities reporting a specific indicator) are essential to be able to compute coverage rates. Internal consistency is checked in terms of trends over time for coverage of each indicator, as well as between first antenatal visit and first pentavalent vaccination, and between first and third pentavalent vaccinations, as recommended by the World Health Organization.15 Outliers, defined as more than two standard deviations from the mean values of the numerators for the multi-year period, are identified and corrected if no satisfactory explanation is found for the outlier value.
For the coverage calculations, we need to adjust for incomplete reporting by facilities. This involves making assumptions about the number of service outputs (pregnancy care, vaccinations, etc.) provided at facilities which did not report compared with those that reported. The adjustment can be expressed as follows:
where n is the number of service outputs, c is the reporting completeness, k is the adjustment factor. If we consider the missing reports an indication that no services were provided during the reporting period, then k = 0, and no adjustment is made for incomplete reporting. However, if facilities provided services but not at the same level as before reporting periods, the apparent incomplete reporting is an indication of a lower level of service provision; k in this case is between 0 and 1. In other cases, it may be assumed that services were provided at the same rate in non-reporting facilities as in reporting facilities, and so k = 1. Important considerations in the selection of a value of k are the extent to which large health facilities and private health facilities are reporting and engaged in the provision of the specific services. This is likely to be different for different services, resulting in different adjustment factors. Subsequently, the selection of the most likely value of k is done through a comparison of facility reports with the survey results, by selecting a value of k that brings the adjusted health facility statistic close to the survey statistic for a particular year with data from both sources.
Step 3 is about finding the best possible denominator or target population size. This is usually obtained from census projections by the country’s national bureau of statistics. Often, problems with the projected subnational denominators lead to unexpectedly high or low coverage rates. An alternative approach is to derive the population size from health facility data on indicators with near-universal coverage (at least 90%), such as the first antenatal visit or the first dose of pentavalent vaccine (normally given at 6 weeks of age). If the health facility reports are of good quality, and almost all children are vaccinated, the first vaccination or first antenatal visit numbers should be very close to the actual target populations. Only a small proportion is added to the reported first pentavalent vaccination or first antenatal visit numbers to account for those who did not receive them (< 10% of people, according to household surveys in many countries).16 ,17 The estimated young infant target population can then be used to obtain target populations for other maternal and child health coverage indicators (e.g. live births, deliveries, pregnancies and older infants), based on available statistics from recent surveys or other sources.
In step 4, the adjusted numbers and denominators are used to calculate the subnational coverages of immunizations, antenatal care (first and fourth visits) and facility-based deliveries.
In the second half of 2016, we used data from Kenya to apply and refine the method. Health-facility data were analysed across the 47 counties for the fiscal years (1 July to 30 June) 2012/13, 2013/14, 2014/15 and 2015/16 and compared with survey results from the most recent Kenya demographic and health survey in 2014.18 Population projections were obtained from the 2009 Kenya national census.19
All calculations were done using Microsoft Office 365 Excel software version 1705 (Microsoft Corporation, Redmond, United States of America). The spreadsheet with data by county and the adjustment procedure are available from the corresponding author.
Full text: Click here