The largest database of trusted experimental protocols
> Procedures > Health Care Activity > Intensive Care

Intensive Care

Intensive Care is a specialized branch of healthcare that focuses on providing comprehensive and advanced medical care to critically ill or injured patients.
This field encompasses the use of advanced technology, continuous monitoring, and specialized interventions to support and stabilize patients with life-threatening conditions.
Intensive Care units (ICUs) are staffed by highly trained medical professionals, including physicians, nurses, and respiratory therapists, who work together to deliver round-the-clock care to patients in need of immediate and intensive medical attention.
The primary goal of Intensive Care is to optimize the patient's chances of survival, minimize complications, and facilitate a swift recovery.
Through the integration of cutting-edge medical treatments, evidence-based protocols, and innovative technologies, Intensive Care plays a crucial role in improving patient outcomes and reducing mortality rates for a wide range of critical illnesses and injuries.

Most cited protocols related to «Intensive Care»

Our consensus process relied on evidence where available and, in the absence of evidence, consensus expert opinion when possible [7 (link)]. This combined approach has previously led to important practice guidelines that were widely adopted into clinical practice [8 (link)]. In contrast, expert opinion alone can ignore important evidence, whereas evidence-based reviews can be conceptually flawed without expert opinion [9 ]. We conducted the consensus process in three stages: preconference, conference and postconference.
Before the conference, we identified six topics relevant to the field of ARF: definition/classification system for ARF; clinical outcome measures for ARF studies; physiological end-points for ARF studies; animal models of ARF; techniques for assessing and achieving fluid balance in ARF; and information technology in acute dialysis. We selected these topics based on the level of possible clinical impact, the level of controversy, known or suspected variation in practice, potential importance for scientific outcome, potential for development of evidence-based medicine recommendations, and availability of evidence. For each topic we outlined a preliminary set of key questions. We then invited an international panel, predominantly from the fields of nephrology and intensive care, based on their expertise in the fields of analysis. Panelists were assigned to three-person workgroups, with each workgroup addressing one key topic. Each workgroup conducted literature searches related to their topic questions via Medline, PubMed, bibliography of review articles and participants' files. Searches were limited to English language articles. However, articles written in other languages were used when identified by workgroup members. During this stage, the scope of the conference was also more clearly defined.
We conducted a 2-day conference in May 2002 in Vicenza, Italy. We developed summary statements through a series of alternating breakout and plenary sessions. In each breakout session, the workgroup refined key questions, identified the supporting evidence, and generated recommendations and/or directions for future research as appropriate. We generated future research questions by identifying deficiencies in the literature and debating whether more evidence was necessary. Where possible, we also considered pertinent study design issues. Workgroup members presented their findings during plenary sessions, rotating responsibility for presenting to ensure full participation. The workgroup then revised their drafts as needed until a final version was agreed upon. When consensus was not achieved on any individual question by the conclusion of the meeting, deliberations continued by correspondence. When voting was required to settle an issue, a two-thirds majority was required to approve a proposal.
A writing committee assembled the individual reports from the workgroups and each report was edited to conform to a uniform style and for length. Finally, each report was submitted for comments to independent international experts. In this report we present a summary of the proceedings.
Publication 2004
Animal Model Conferences Dialysis Fluid Balance Intensive Care physiology
Three members of the organizing committee met in March 2012 to define the methodology, to select the subtopics for study, and to identify the experts in the field. Experts were invited based on their record of publications in PARDS in the past 5 years and their participation in clinical research studies in pediatric critical care. The final list of 27 experts, representing 21 academic institutions and eight countries, constituted the PALICC expert group (Appendix 1). Of note, only one expert declined to participate due to personal reasons; two experts initially agreed to participate but were subsequently unable for personal reasons.
The first PALICC meeting took place in Chicago, IL, on October 2, 2012, in conjunction with the fall meeting of the PALISI Network. At this meeting, we discussed and agreed upon conference subtopics, the project timeline, and the consensus methodology (Fig. 1). Experts were also assigned to each of the nine subtopics. The modified Delphi approach previously employed by the French Society of Pediatric Intensive Care (13 ) was chosen as the methodology to achieve consensus. This approach was necessary because of the limited data and low level of available evidence, as well as the high variability in clinical practice in PARDS. A detailed description of this methodology is available in the supplement published in Pediatric Critical Care Medicine (14 (link)).
Between the first and second meeting, each group of experts undertook a comprehensive, standardized literature review. Upon completion, each group drafted their recommendations along with detailed arguments to support them. The second meeting occurred in Montreal, QC, Canada, on April 18–19, 2013. At this 2-day meeting, the recommendations were discussed and the wording of each agreed upon by the majority of experts. Possible omissions for any of the nine topics were also discussed. After the second meeting, recommendations with their respective arguments (long texts) were distributed to each expert for electronic scoring by the Research ANd Development/University of California Los Angeles (RAND/UCLA) appropriateness method (15 ). Experts with a disclosed conflict of interest were excluded from voting on areas where any real or perceived conflict was identified. After the initial scoring, all recommendations were consolidated by the organizing committee.
Agreement was determined by voting using the RAND/UCLA scale (scores range from 1 to 9), with each expert having an equal vote but with the highest and lowest scores discarded after each vote. “Strong” agreement required that all experts rank the recommendation 7 or higher. “Weak” agreement meant that at least one more expert ranked the recommendation below 7, but the median vote was at least 7. Those with strong agreement were considered complete, and those with weak agreement were revised based on comments by the experts. These revised recommendations were then distributed for a second round of electronic voting. After this voting, some reworded recommendations obtained a strong agreement. For the remaining recommendations with a weak agreement after the second round, the percentage of experts who rated 7 or above was calculated and is reported after each weak recommendation. With this method of calculation, a strong agreement corresponded to a percentage of agreement more than 95% (no more than one expert rated below 7 on the RAND/UCLA scale).
The third and final meeting took place on October 9, 2013, in Paris, France. Each group presented their final recommendations, and a third round of voting was conducted for several specific but unresolved recommendations related to the definitions. The organizers believed it was vital to achieve strong agreement regarding definitions, and this was accomplished after much dialog and debate. Additionally, each group of experts presented their consensus regarding key areas of controversy and future research.
Publication 2015
Committee Members Conferences Critical Care Debility Dietary Supplements Intensive Care TimeLine
This investigation was performed in the CPCCRN of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (8 (link)). Detailed methods for the TOPICC data collection have been previously described (6 (link)). There were seven sites, and one was composed of two institutions. In brief, patients from newborn to less than 18 years were randomly selected and stratified by hospital from December 4, 2011, to April 7, 2013. Patients from both general/medical and cardiac/cardiovascular PICUs were included. Moribund patients (vital signs incompatible with life for the first 2 hr after PICU admission) were excluded. Only the first PICU admission during hospitalization was included. The protocol was approved by all participating institutional review boards. Other analyses using this database have been published (6 (link), 7 (link), 9 (link), 10 (link)).
Data included descriptive and demographic information (Table 1). Interventions included both surgery and interventional catheterization. Cardiac arrest included closed chest massage within 24 hours before hospitalization or after hospital admission but before PICU admission. Admission source was classified as emergency department, inpatient unit, postintervention unit, or admission from another institution. Diagnosis was classified by the system of primary dysfunction based on the reason for PICU admission; cardiovascular conditions were classified as congenital or acquired.
The primary outcome in this analysis was hospital survival versus death.
Physiologic status was measured using the PRISM physiologic variables (5 (link)) with a shortened time interval (2 hr before PICU admission to 4 hr after admission for laboratory data and the first 4 hr of PICU care for other physiologic variables). For model building, the PRISM components were separated into cardiovascular (heart rate, systolic blood pressure, and temperature), neurologic (pupillary reactivity and mental status), respiratory (arterial Po2, pH, Pco2, and total bicarbonate), chemical (glucose, potassium, blood urea nitrogen, and creatinine), and hematologic (WBC count, platelet count, prothrombin, and partial thromboplastin time) components, and the total PRISM was also separated into neurologic and non-neurologic categories.
The time interval for assessing PRISM data was modified for cardiac patients under 91 days old because some institutions admit infants to the PICU before a cardiac intervention to “optimize” the clinical status but not for intensive care; in these cases, the postintervention period more accurately reflects intensive care. However, in other infants for whom the cardiac intervention is delayed after PICU admission or the intervention is a therapy required because of failed medical management of the acute condition, the routine PRISM data collection time interval is an appropriate reflection of critical illness. Therefore, we identified infants for whom it would be more appropriate to use data from the 4 hours after the cardiac intervention (postintervention time interval) and those for whom using the admission time interval was more appropriate. We operationalized this decision on the conditions likely to present within the first 90 days, the time period when the vast majority of these conditions present (Table 2).
Statistical analyses used SAS 9.4 (SAS Institute Inc., Cary, NC) for descriptive statistics, model development, and fit assessment and R 3.1.1 (The R Foundation for Statistical Computing, Vienna, Austria; http://www.wu.ac.at/statmath) for evaluation of predictive ability. Patient characteristics were descriptively compared and evaluated across sites using the Kruskal-Wallis test for continuous variables and the Pearson chi-square test for categorical variables. The statistical analysis was under the direction of R.H.
The dataset was randomly divided into a derivation set (75%) for model building and a validation set (25%) stratified by the study site. Univariate mortality odds ratios were computed, and variables with a significance level of less than 0.1 were considered candidate predictors for the final model. As was the case for the previously published trichotomous (death, survival with significant new morbidity, and intact survival) model construction, a nonautomated (examined by biostatistician and clinician at each step) backward stepwise selection approach was used to select factors. Multicategorical factors (e.g., diagnostic categories) had factors combined when appropriate per statistical and clinical criteria. Clinician input was included (and paramount) in this process to ensure that the model fit was relevant and consistent with clinical information. Construction of a clinically relevant, sufficiently predictive model using predictors readily available to the clinician took precedence over inclusion based solely on statistical significance. We were cognizant of the existing trichotomous outcome model and attempted, when statistically justified, to create a compatible two-outcome model that could aid in a smooth transition to using the three-outcome approach.
Final candidate models were evaluated based on 2D receiver operating characteristic (ROC) curves (discrimination) and the Hosmer-Lemeshow goodness of fit (calibration). For the entire dataset, goodness of fit with respect to key subgroups was assessed by examining SMRs for descriptive and diagnostic categories not used in the final model. Only categories with at least 10 outcomes in observed and expected cells were used.
Publication 2016
Activated Partial Thromboplastin Time Arteries Bicarbonates Cardiac Arrest Cardiovascular Diseases Cardiovascular System Catheterization Cells Chest Creatinine Critical Illness Diagnosis Discrimination, Psychology Disease Management Ethics Committees, Research Glucose Heart Hospitalization Infant Infant, Newborn Inpatient Intensive Care Massage Operative Surgical Procedures Patients physiology Platelet Counts, Blood Potassium prisma Prothrombin Rate, Heart Reflex Respiratory Diaphragm Respiratory Rate Signs, Vital Systems, Nervous Systolic Pressure Therapeutics Urea Nitrogen, Blood
The Difficult Airway Society commissioned a working group to update the guidelines in April 2012. An initial literature search was conducted for the period January 2002 to June 2012 using databases (Medline, PubMed, Embase, and Ovid) and a search engine (Google Scholar). The websites of the American Society of Anesthesiologists (http://www.asahq.org), Australian and New Zealand College of Anaesthetists (http://www.anzca.edu.au), European Society of Anesthesiologists' (http://www.esahq.org/euroanaesthesia), Canadian Anesthesiologists' Society (http://www.cas.ca), and the Scandinavian Society of Anesthesiology and Intensive Care Medicine (http://ssai.info/guidelines/) were also searched for airway guidelines. English language articles and abstract publications were identified using keywords and filters. The search terms were as follows: ‘Aintree intubating catheter’, ‘Airtraq’, ‘airway device’, ‘airway emergency’, ‘airway management’, ‘Ambu aScope’, ‘backward upward rightward pressure’, ‘Bonfils’, ‘Bullard’, ‘bronchoscopy’, ‘BURP manoeuvre’, ‘can't intubate can't ventilate’, ‘can't intubate can't oxygenate’, ‘C-Mac’, ‘Combitube’, ‘cricoid pressure’, ‘cricothyroidotomy’, ‘cricothyrotomy’, ‘C trach’, ‘difficult airway’, ‘difficult intubation’, ‘difficult laryngoscopy’, ‘difficult mask ventilation’, ‘difficult ventilation’, ‘endotracheal intubation’, ‘esophageal intubation’, ‘Eschmann stylet’, ‘failed intubation’, ‘Fastrach’, ‘fiber-optic scope’, ‘fibreoptic intubation’, ‘fiberoptic scope’, ‘fibreoptic stylet’, ‘fibrescope’ ‘Frova catheter', ‘Glidescope’, ‘gum elastic bougie’, ‘hypoxia’, ‘i-gel’, ‘illuminating stylet’, ‘jet ventilation catheter’, ‘laryngeal mask’, ‘laryngeal mask airway Supreme’, ‘laryngoscopy’, ‘lighted stylet’, ‘light wand’, ‘LMA Supreme’, ‘Manujet’, ‘McCoy’, ‘McGrath’, ‘nasotracheal intubation’, ‘obesity’, ‘oesophageal detector device’, ‘oesophageal intubation’, ‘Pentax airway scope’, ‘Pentax AWS’, ‘ProSeal LMA′, ‘Quicktrach’, ‘ramping’, ‘rapid sequence induction’, ‘Ravussin cannula’, ‘Sanders injector’, ‘Shikani stylet’, ‘sugammadex’, ‘supraglottic airway’, ‘suxamethonium’, ‘tracheal introducer’, ‘tracheal intubation’, ‘Trachview’, ‘Tru view’, ‘tube introducer’, ‘Venner APA’, ‘videolaryngoscope’, and ‘videolaryngoscopy’.
The initial search retrieved 16 590 abstracts. The searches (using the same terms) were repeated every 6 months. In total, 23 039 abstracts were retrieved and assessed for relevance by the working group; 971 full-text articles were reviewed. Additional articles were retrieved by cross-referencing the data and hand-searching. Each of the relevant articles was reviewed by at least two members of the working group. In areas where the evidence was insufficient to recommend particular techniques, expert opinion was sought and reviewed.8 (link) This was most notably the situation when reviewing rescue techniques for the ‘can't intubate can't oxygenate’ (CICO) situation.
Opinions of the DAS membership were sought throughout the process. Presentations were given at the 2013 and 2014 DAS Annual Scientific meetings, updates were posted on the DAS website, and members were invited to complete an online survey about which areas of the existing guidelines needed updating. Following the methodology used for the extubation guidelines,5 (link) a draft version of the guidelines was circulated to selected members of DAS and acknowledged international experts for comment. All correspondence was reviewed by the working group.
Publication 2015
Airway Management Anesthesiologist Anesthetist Bronchoscopy Cannula Catheters Dyspnea Emergencies Eructation Esophagus Europeans Frova Hypoxia Intensive Care Intubation Intubation, Intratracheal Laryngoscopy Light Medical Devices Obesity Pharmaceutical Preparations Pressure Rapid Sequence Induction Scandinavians Succinylcholine Sugammadex Trachea Tracheal Extubation
Over the 6‑month period covering April 2010 to September 2010, all patients admitted to one of our patient wards at the Division of General Surgery, Department of Surgery, Medical University of Vienna were included in this study.
The Division of General Surgery in our university hospital consists of the following teams and specializations: colorectal surgery, hepatobiliary surgery, endocrine surgery, upper gastrointestinal (GI) surgery (esophageal and stomach surgery), bariatric surgery, breast surgery, and pancreatic surgery.
The patient data were extracted by reviewing all discharge letters from that period taken from the digital archives.
Overall, 517 patients were admitted over this period, some repeatedly, leading to a total of 817 admissions. These 517 patients underwent 463 operations. The complications of these operations were then rated according to the Clavien-Dindo classification (Table 1). For easier use, the suffix “d” for permanent disability was not drawn upon.

Clavien-Dindo classification

GradeDefinition
Grade IAny deviation from the normal postoperative course without the need for pharmacological treatment, or surgical, endoscopic, and radiological interventions.Allowed therapeutic regimens are: drugs as antiemetics, antipyretics, analgetics, diuretics and electrolytes, and physiotherapy. This grade also includes wound infections opened at the bedside
Grade IIRequiring pharmacological treatment with drugs other than such allowed for grade I complications.Blood transfusions and total parenteral nutrition are also included
Grade IIIRequiring surgical, endoscopic, or radiological intervention
Grade IIIaIntervention not under general anesthesia
Grade IIIbIntervention under general anesthesia
Grade IVLife-threatening complication (including central nervous system complications) requiring IC/ICU management
Grade IVaSingle organ dysfunction (including dialysis)
Grade IVbMultiorgan dysfunction
Grade VDeath of a patient

According to Dindo et al. [6 (link)]

IC intermediate care, ICU intensive care unit

The operations were sorted according to the complexity ranking (eight groups) in the accounting system of the Austrian Chamber of Physicians (Table 2; [8 ]).

Operation groups (complexity according to the Austrian Chamber of Physicians)

Operation groupExamples
IAbscess incisions, secondary sutures, proctoscopy, skin biopsy
IIExcisions of atheromas, fibromas, lipomas, incisions of anal abscesses
IIIToe amputation, small lymph node extirpation, thoracic drainage, colonoscopy
IVTracheotomy, appendectomy, hernia operation, colostomy, gastrostomy, ERCP
VGastroenterostomy, interventions for recurrent hernia, Cimino fistula, radical varicose vein stripping
VIStrumectomy, cholecystectomy, splenectomy, hemicolectomy, reduction mammoplasty
VIIPartial pancreatectomy, subtotal colectomy, subsegmental and large liver resections
VIIIEsophageal resection, open surgery of aortic aneurysms, organ transplantation
Full text: Click here
Publication 2018
Amputation Antiemetics Antipyretics Anus Aortic Aneurysm Appendectomy Atheroma Bariatric Surgery Blood Transfusion Central Nervous System Cholecystectomy Colectomy Colostomy Dialysis Disabled Persons Diuretics Drainage Electrolytes Endocrine Surgical Procedures Fibroma Fingers Fistula Gastrointestinal Surgical Procedure Gastrostomy Hemicolectomy Hepatectomy Hernia Intensive Care Lipoma Lymph Node Excision Operative Surgical Procedures Organ Transplantation Pancreas Pancreatectomy Parenteral Nutrition, Total Patient Discharge Patients Pharmaceutical Preparations Pharmacotherapy Physicians Proctoscopy Skin Splenectomy Stomach Surgical Endoscopy Surgical Wound Sutures Therapeutics Therapy, Physical Thoracic Surgical Procedures Treatment Protocols Upper Gastrointestinal Tract Varices Wound Infection X-Rays, Diagnostic

Most recents protocols related to «Intensive Care»

PCs of children with medical complexity were recruited from Complex Care Programs at SickKids, RVH, and CVH. To be eligible for the Complex Care Program, children must meet at least 1 criterion from each of the following conditions: technology dependence and/or users of high-intensity care (eg, mechanical ventilator, constant medical/nursing supervision), fragility (eg, severe/life-threatening condition, an intercurrent illness causing immediate serious health risk), chronicity (condition expected to last at least 6 more months or life expectancy less than 6 months), and complexity (involvement of at least 5 health care practitioners/teams at 3 different locations or family circumstances that impede their ability to provide day-to-day care of decision-making for a child with medical complexity) [18 ]. Children with medical complexity were also between 0 and 18 years of age at the time of study initiation. Purposive sampling guided parental participant selection to ensure diversity in role, communication experience, age, ethnicity, and location [19 (link),20 (link)].
PCs were eligible to participate if they were English-speaking, had access to the internet and a computer, and were the primary caregiver of a child with medical complexity. CTMs were approached prior to recruitment to ensure it was an appropriate time to engage in research for the families (eg, hospitalization, end-of-life, or PC physical/mental health concerns).
In this study, “NPs” refers to the nurse practitioners of children with medical complexity in the Complex Care Program, and “HCPs” refers to other hospital and community–based health care providers. CTMs comprise both NPs and HCPs together.
Every PC had their assigned Complex Care Program NP on the platform. PCs were also able to invite other members of their child’s care team (eg, CTMs like social workers, patient information coordinators, pediatricians, etc) to use C2. CTMs that registered on C2 were presented with the terms of use of the platform and the study information letter. If interested, they were approached by the study research coordinator (RC) and presented with information about the research study and the opportunity to participate. CTMs that declined to participate in the research study were still able to use C2. PCs and NPs received training before registering on C2 (duration of 30 to 60 minutes), and the training presentation was later made available on C2. In addition, CTMs could set up a disclaimer on C2 if they were away or designate time slots in which they would respond to messages (eg, 8 AM to 4 PM) to aid in setting expectations with PCs.
All research study participants received remuneration for participating in the research study. PCs were given CAD $60 (US $44.59) in gift cards (CAD $20 at baseline and CAD $40 after completing the study), and HCPs that completed the end-of-study questionnaire were entered into a draw for a CAD $100 (US $74.32) gift card. Participants that completed the end-of-study semistructured interview received an additional gift card worth CAD $20 (US $14.86). C2 also had a built-in points system where PCs received a specified number of points when completing a platform activity (ie, accessing educational material). As a usage incentive, PCs received a gift card worth CAD $5 (US $3.72) when they reached predetermined point milestones. NPs also received a CAD $5 (US $3.72) gift card for every 50 messages that they sent through C2.
Full text: Click here
Publication 2023
Child cyclohexane-1,2,4-tris(methylenesulfonate) Day Care, Medical Ethnicity Hospitalization Intensive Care Mechanical Ventilator Medical Care Team Mental Health Parent Patients Pediatricians Physical Examination Practitioner, Nurse Supervision
This study was approved by the Ethics Committee of the French Intensive Care Society (Société de Réanimation de Langue Francaise CE #17-26) and complied with French research Reference Methodology MR003 regarding health-data privacy, and the French National Commission on Informatics and Liberty (CNIL).
Full text: Click here
Publication 2023
Ethics Committees Intensive Care
In this retrospective cohort study, the authors used Electronic Health Records (EHR) from COVID-19-related admissions to the largest referral hospital for the disease in Sao Paulo, Brazil. The authors developed a prediction score for intensive care admission and hospital mortality using demographics and baseline clinical variables.
Hospital das Clinicas, University of Sao Paulo Medical School (HCFMUSP), is a renowned 2,200-bed teaching hospital complex that specializes in providing high-level medical and surgical care. Between March 2020 and September 2020, its 900-bed central building was designated by the Sao Paulo State's Health Department to operate as a special COVID-19 treatment center, receiving SARS-CoV-2-infected patients from 278 secondary hospitals located in 85 cities, mainly in the Sao Paulo metropolitan area. Additionally, its intensive care capacity was increased four-fold with the conversion of regular wards to ICUs, totaling 300 ICU beds. Throughout the pandemic, COVID-19 care followed institutional protocols in our hospital.
Full text: Click here
Publication 2023
CARE protocol COVID 19 Hospital Referral Inpatient Intensive Care Operative Surgical Procedures SARS-CoV-2
Participants in the analytic sample were categorized into four severity groups according to their symptoms: asymptomatic (N = 92, 9.4%), mild (N = 378, 38.5%), moderate (N = 408, 41.5%), and severe (N = 75, 7.6%). This categorization was based on the NIH COVID-19 clinical spectrum updated October 2021 (National Institutes of Health, 2021). The asymptomatic category consisted of responders who reported a positive SARS-CoV-2 virologic test result without any symptoms associated with COVID-19. The mild category included responders with at least one symptom associated with COVID-19 but no shortness of breath or difficulty breathing. Moderate cases were in responders who reported shortness of breath and/or diagnosis of lower respiratory disease (pneumonia/bronchitis) during clinical assessment or imaging. These responders maintained oxygen saturation (SpO2)≥94% on room air at sea level. Mild and moderate cases were medically managed primarily at home, even if they initially visited a healthcare facility for medical treatment and/or testing. Severe cases included responders with SpO2<93% on room air, respiratory rate >30 breaths/min, heart rate greater than 100 beats per minute, acute respiratory distress syndrome, septic shock, cardiac dysfunction, or an exaggerated inflammatory response in addition to pulmonary disease, or severe illness causing cardiac, hepatic, renal, central nervous system, or thrombotic disease during COVID-19. Responders were also categorized as severe if they were admitted to the hospital, or received intensive care or mechanical ventilation, or if they eventually died from COVID-19.
Two complimentary analytic variables were created: an ordinal COVID-19 severity variable on 1–4 scale corresponding to asymptomatic, mild, moderate, and severe symptoms, and a binary COVID-19 severe category variable, with asymptomatic, mild, and moderate patients in one category, and severe patients in the second category.
Full text: Click here
Publication 2023
Bronchitis Central Nervous System COVID 19 Diagnostic Techniques, Respiratory System Dyspnea Health Services Administration Heart Heart Failure Intensive Care Kidney Mechanical Ventilation Oxygen Saturation Patients Pneumonia Rate, Heart Respiratory Distress Syndrome, Adult Respiratory Rate SARS-CoV-2 Saturation of Peripheral Oxygen Septic Shock Thrombosis
A care team is a group of professionals working in a defined unit [28 (link)], who interact in the context of the broader functional system. The unit is defined by the specialty of care delivered by the healthcare professionals who make up the team.
The specialties targeted by the IMPACTT project relate to medicine or surgery (excluding intensive care [31 ]. Care teams are composed of six categories of professions: administrative, logistical and technical, medical, medico-technical and psychosocial, paramedical, and management. Whether the establishment is private or public, these professionals are either employees (physicians, nurses, secretaries, physiotherapists, etc.) or self-employed (mostly physicians).
Professionals were considered to be external to the investigated team either: (i) when they only visited the unit in question because they usually worked in another unit in the establishment (porters, radiologists, etc.); or (ii) when they worked in the unit in question, but the services they provided (notably accommodation and catering) were the responsibility of a private company [28 (link)].
Full text: Click here
Publication 2023
Health Care Professionals Intensive Care Nurses Ocular Accommodation Operative Surgical Procedures Pharmaceutical Preparations Physical Therapist Physicians Radiologist

Top products related to «Intensive Care»

Sourced in United States, Austria, Japan, Cameroon, Germany, United Kingdom, Canada, Belgium, Israel, Denmark, Australia, New Caledonia, France, Argentina, Sweden, Ireland, India
SAS version 9.4 is a statistical software package. It provides tools for data management, analysis, and reporting. The software is designed to help users extract insights from data and make informed decisions.
Sourced in Finland, United States
Centricity Critical Care is a comprehensive clinical information system designed for use in critical care environments. It provides real-time data management and analysis capabilities to support patient monitoring and decision-making.
Sourced in Germany, United States, United Kingdom, Poland
EDTA is a commonly used anticoagulant in laboratory settings. It functions by chelating calcium ions, which are essential for the blood clotting process. This property of EDTA helps prevent blood samples from coagulating, facilitating various analytical procedures.
Sourced in United States, Austria, Japan, Belgium, United Kingdom, Cameroon, China, Denmark, Canada, Israel, New Caledonia, Germany, Poland, India, France, Ireland, Australia
SAS 9.4 is an integrated software suite for advanced analytics, data management, and business intelligence. It provides a comprehensive platform for data analysis, modeling, and reporting. SAS 9.4 offers a wide range of capabilities, including data manipulation, statistical analysis, predictive modeling, and visual data exploration.
Sourced in France, United States
IntelliSpace Critical Care and Anesthesia is a comprehensive patient monitoring and clinical information management solution designed for critical care and anesthesia environments. The system integrates real-time patient data, clinical decision support, and workflow tools to help clinicians make informed decisions and improve patient care.
Sourced in United States, Austria, Japan, Belgium, New Zealand, United Kingdom, Germany, Denmark, Australia, France
R version 3.6.1 is a statistical computing and graphics software package. It is an open-source implementation of the S programming language and environment. R version 3.6.1 provides a wide range of statistical and graphical techniques, including linear and nonlinear modeling, classical statistical tests, time-series analysis, classification, clustering, and more.
Sourced in United States, United Kingdom, Germany, Austria, Japan
SPSS version 28 is a statistical software package developed by IBM. It is designed to analyze and manage data, perform statistical analyses, and generate reports. The software provides a range of tools for data manipulation, regression analysis, hypothesis testing, and more. SPSS version 28 is a widely used tool in various fields, including academia, research, and business.
Sourced in United States
Troponin-I is a cardiac-specific biomarker used in laboratory testing to aid in the diagnosis of myocardial infarction (heart attack). It is a structural protein found in cardiac muscle cells that is released into the bloodstream when these cells are damaged or die. The concentration of Troponin-I in the blood can be measured to help determine if a patient is experiencing a heart attack or other acute coronary event.
Sourced in United States, United Kingdom, Denmark, Belgium, Spain, Canada, Austria
Stata 12.0 is a comprehensive statistical software package designed for data analysis, management, and visualization. It provides a wide range of statistical tools and techniques to assist researchers, analysts, and professionals in various fields. Stata 12.0 offers capabilities for tasks such as data manipulation, regression analysis, time-series analysis, and more. The software is available for multiple operating systems.
Sourced in United States
CareVue is a comprehensive patient monitoring system designed for use in healthcare settings. It provides continuous monitoring of vital signs and other physiological parameters to assist healthcare professionals in patient care.

More about "Intensive Care"

Intensive Care, also known as Critical Care or ICU (Intensive Care Unit), is a specialized field of healthcare that focuses on providing advanced, comprehensive medical care to patients with life-threatening conditions.
This dynamic discipline encompasses the use of cutting-edge technology, continuous monitoring, and specialized interventions to support and stabilize critically ill or injured individuals.
The Intensive Care team, comprising highly trained physicians, nurses, respiratory therapists, and other medical professionals, works collaboratively to deliver around-the-clock care to patients in need of immediate and intensive attention.
The primary goal of Intensive Care is to optimize the patient's chances of survival, minimize complications, and facilitate a swift recovery.
Through the integration of evidence-based protocols, innovative treatments, and advanced technologies like SAS version 9.4, Centricity Critical Care, EDTA, IntelliSpace Critical Care and Anesthesia, R version 3.6.1, SPSS version 28, Troponin‐I, and Stata 12.0, Intensive Care plays a crucial role in improving patient outcomes and reducing mortality rates for a wide range of critical illnesses and injuries, including those monitored through CareVue.
By leveraging AI-driven tools like PubCompare.ai, researchers and clinicians can easily locate the best protocols from literature, pre-prints, and patents, enhancing the reproducibility and accuracy of their Intensive Care studies.
This field's continuous evolution, driven by cutting-edge research and technological advancements, ensures that patients receive the most effective and innovative care possible.