Centrifugation
It involves the separation of particles, cells, or molecules based on their differential sedimentation rates within a centrifugal force field.
This process allows for the purification, concentration, or isolation of various biological components, such as proteins, nucleic acids, organelles, and cells.
Centrifugation protocols can vary in terms of speed, duration, temperature, and rotor type, depending on the specific application and sample characteristics.
Optimizing these parameters is crucial for ensuring the reproducibility and reliability of experimental results.
PubCompare.ai offers an AI-powered platform to help researchers easily locate, compare, and identify the best centrifugation methods and products to enhance their research workflows and improve data quality.
Leveraging the power of artificial intelligence, PubCompare.ai can help take your work to the next level by providing data-driven insights and recommendations to optimize your centrifugation protocols.
Most cited protocols related to «Centrifugation»
Most recents protocols related to «Centrifugation»
Example 1
The particles are synthesized by adding between about 5 mg and about 20 mg of rituximab (or non-specific IgG) to 20 mg of ABRAXANE. Saline is then added to a final volume of 2 ml for a final concentration of 10 mg/ml ABRAXANE, and the mixture is allowed to incubate at room temperature for 30 minutes to allow particle formation. Particles average about 160 nm and are termed “AR160” nanoparticles.
Optionally, the composition is divided into aliquots and frozen at −80° C. Once frozen the aliquots are optionally lyophilized overnight with the Virtis 3L benchtop lyophilizer (SP Scientific, Warmister, PA) with the refrigeration on. A lyophilized preparation is generated.
The dried aliquots are stored at room temperature. These samples are reconstituted in saline at room temperature for 30 minutes, followed by centrifugation for 7 minutes at 2000×g. The resulting sample is then resuspended in the appropriate buffer, as needed.
Example 1
Provided is a preparation method for an A-site high-entropy nanometer metal oxide (Gd0.4Er0.3La0.4Nd0.5Y0.4)(Zr0.7, Sn0.8, V0.5)O7 with high conductivity, the method including the following steps.
-
- (1) Gd(NO3)3, Er(NO3)3, La(NO3)3, Nd(NO3)3, Y(NO3)3, ZrOSO4, SnC14 and NH4VO3 were taken at a molar ratio of 0.4:0.3:0.4:0.5:0.4:0.7:0.8:0.5, added to a mixed solution of deionized water/absolute ethyl alcohol/tetrahydrofuran at a mass ratio of 0.3:3:0.5, and stirred for five minutes to obtain a mixed liquid I. The ratio of the total mass of Gd(NO3)3, Er(NO3)3, La(NO3)3, Nd(NO3)3, Y(NO3)3, ZrOSO4, SnC14 and NH4VO3 to that of the mixed solution of deionized water/absolute ethyl alcohol/tetrahydrofuran (0.3:3:0.5) is 12.6%.
- (2) Para-phenylene diamine, hydrogenated tallowamine, sorbitol and carbamyl ethyl acetate at a mass ratio of 1:0.2:7:0.01 were taken, added to propyl alcohol, and stirred for one hour to obtain a mixed liquid II. The ratio of the total mass of the para-phenylene diamine, the hydrogenated tallowamine, the sorbitol and the carbamyl ethyl acetate to that of the propyl alcohol is 7.5%;
- (3) The mixed liquid I obtained in step (1) was heated to 50° C., and the mixed liquid II obtained in step (2) was dripped at the speed of one drop per second, into the mixed liquid I obtained in step (1) with stirring and ultrasound, and heated to the temperature of 85° C. after the dripping is completed and the temperature was maintained for three hours while stopping stirring, and the temperature was decreased to the room temperature, so as to obtain a mixed liquid III. The mass ratio of the mixed liquid I to the mixed liquid II is 10:4.
- (4) The mixed liquid III was added to an electrolytic cell with using a platinum electrode as an electrode and applying a voltage of 3 V to two ends of the electrode, and reacting for 13 minutes, to obtain a mixed liquid IV.
- (5) The mixed liquid IV obtained in step (4) was heated with stirring, another mixed liquid II was taken and dripped into the mixed liquid IV obtained in step (4) at the speed of one drop per second. The mass ratio of the mixed liquid II to the mixed liquid IV is 1.05:1.25; and after the dripping is completed, the temperature was decreased to the room temperature under stirring, so as to obtain a mixed liquid V.
- (6) A high-speed shearing treatment was performed on the mixed liquid V obtained in step (5) by using a high-speed shear mulser at the speed of 20000 revolutions per minute for one hour, so as to obtain a mixed liquid VI.
- (7) Lyophilization treatment was performed on the mixed liquid VI to obtain a mixture I;
- (8) The mixture I obtained in step (7) and absolute ethyl alcohol were mixed at a mass ratio of 1:2 and uniformly stirred, and were sealed at a temperature of 210° C. for performing solvent thermal treatment for 18 hours. The reaction was cooled to the room temperature, the obtained powder was collected by centrifugation, washed with deionized water and absolute ethyl alcohol eight times respectively, and dried to obtain a powder I.
- (9) The powder I obtained in step (8) and ammonium persulfate was uniformly mixed at a mass ratio of 10:1, and sealed and heated to 165° C. The temperature was maintained for 13 hours. The reaction was cooled to the room temperature, the obtained mixed powder was washed with deionized water ten times, and dried to obtain a powder II.
- (10) The powder II obtained in step (4) was placed into a crucible, heated to a temperature of 1500° C. at a speed of 3° C. per minute. The temperature was maintained for 7 hours. The reaction was cooled to the room temperature, to obtain an A-site high-entropy nanometer metal oxide (Gd0.4Er0.3La0.4Nd0.5Y0.4)(Zr0.7, Sn0.8, V0.5)O7 with high conductivity.
As observed via an electron microscope, the obtained A-site high-entropy nanometer metal oxide with high conductivity is a powder, and has microstructure of a square namometer sheet with a side length of about 4 nm and a thickness of about 1 nm.
The product powder was taken and compressed by using a powder sheeter at a pressure of 550 MPa into a sheet. Conductivity of the sheet is measured by using the four-probe method, and the conductivity of the product is 2.1×108 S/m.
A commercially available ITO (indium tin oxide) powder is taken and compressed by using a powder sheeter at a pressure of 550 MPa into a sheet, and the conductivity of the sheet is measured by using the four-probe method.
As measured, the conductivity of the commercially available ITO (indium tin oxide) is 1.6×106 S/m.
Example 1
Cell-free fractions were prepared as previously described (25). Briefly, Lactobacillus acidophilus strain La-5 was grown overnight in modified DeMann, Rogosa and Sharpe medium. (mMRS; 10 g peptone from casein, 8 g meat extract, 4 g yeast extract, 8 g D(+)-glucose, 2 g dipotassium hydrogen phosphate, 2 g di-ammonium hydrogen citrate, 5 g sodium acetate, 0.2 g magnesium sulfate, 0.04 g manganese sulfate in 1 L distilled water) (MRS; BD Diagnostic Systems, Sparks, MD). The overnight culture was diluted 1:100 in fresh medium. When the culture grew to an optical density at 600 nm (OD600) of 1.6 (1.2×108 cells/ml), the cells were harvested by centrifugation at 6,000×g for 10 min at 4° C. The supernatant was sterilized by filtering through a 0.2-μm-pore-size filter (Millipore, Bioscience Division, Mississauga, ON, Canada) and will be referred to as cell-free spent medium (CFSM). Two litres of L. acidophilus La-5 CFSM was collected and freeze-dried (Unitop 600 SL, VirTis Co., Inc. Gardiner, NY., USA). The freeze-dried CFSM was reconstituted with 200 ml of 18-Ω water. The total protein content of the reconstituted CFSM was quantified using the BioRad DC protein assay kit II (Bio-Rad Laboratories Ltd., Mississauga, ON, Canada). Freeze-dried CFSM was stored at −20° C. prior to the assays.
Example 6
TbpB and NMB0313 genes were amplified from the genome of Neisseria meningitidis serotype B strain B16B6. The LbpB gene was amplified from Neisseria meningitidis serotype B strain MC58. Full length TbpB was inserted into Multiple Cloning Site 2 of pETDuet using restriction free cloning ((F van den Ent, J. Löwe, Journal of Biochemical and Biophysical Methods (Jan. 1, 2006)).). NMB0313 was inserted into pET26, where the native signal peptide was replaced by that of pelB. Mutations and truncations were performed on these vectors using site directed mutagenesis and restriction free cloning, respectively. Pairs of vectors were transformed into E. coli C43 and were grown overnight in LB agar plates supplemented with kanamycin (50 μg/mL) and ampicillin (100 μg/mL).
tbpB genes were amplified from the genomes of M. catarrhalis strain 035E and H. influenzae strain 86-028NP and cloned into the pET52b plasmid by restriction free cloning as above. The corresponding SLAMs (M. catarrhalis SLAM 1, H. influenzae SLAM1) were inserted into pET26b also using restriction free cloning. A 6His-tag was inserted between the pelB and the mature SLAM sequences as above. Vectors were transformed into E. coli C43 as above.
Cells were harvested by centrifugation at 4000 g and were twice washed with 1 mL PBS to remove any remaining growth media. Cells were then incubated with either 0.05-0.1 mg/mL biotinylated human transferrin (Sigma-aldrich T3915-5 MG), α-TbpB (1:200 dilution from rabbit serum for M. catarrhalis and H. influenzae; 1:10000 dilution from rabbit serum for N. meningitidis), or α-LbpB (1:10000 dilution from rabbit serum-obtained a gift from J. Lemieux) or α-fHbp (1:5000 dilution from mouse, a gift from D. Granoff) for 1.5 hours at 4° C., followed by two washes with 1 mL of PBS. The cells were then incubated with R-Phycoerythrin-conjugated Streptavidin (0.5 mg/ml Cedarlane) or R-phycoerythrin conjugated Anti-rabbit IgG (Stock 0.5 mg/ml Rockland) at 25 ug/mL for 1.5 hours at 4° C. The cells were then washed with 1 mL PBS and resuspended in 200 uL fixing solution (PBS+2% formaldehyde) and left for 20 minutes. Finally, cells were washed with 2×1 mL PBS and transferred to 5 mL polystyrene FACS tubes. The PE fluorescence of each sample was measured for PE fluorescence using a Becton Dickinson FACSCalibur. The results were analyzed using FLOWJO software and were presented as mean fluorescence intensity (MFI) for each sample. For N. meningtidis experiments, all samples were compared to wildtype strains by normalizing wildtype fluorescent signals to 100%. Errors bars represent the standard error of the mean (SEM) across three experiments. Results were plotted statistically analysed using GraphPad Prism 5 software. The results shown in
Example 9
NEBT7EL-pA06238 was grown on LB with 50 μg/ml kanamycin. A 600 ml culture of TBkan50 was inoculated with NEBT7EL-pA06238 and incubated overnight at 37° C. at 200 rpm. The next morning, a 10 L fermentor was prepared with 9.5 L of TB and then inoculated with 500 ml of the overnight culture. The culture was grown at 37° C. The pH was maintained at 6.2 with NaOH and the dO2 was maintained ≥20%. After 2 hours of growth, the temperature was dropped to 25° C. The culture was grown for an additional 1 hour with the OD600 around 7. IPTG was added to a final concentration of 1 mM and CoCl2 was added to 25 μM. Additional CoCl2 was added 1 and 2 hours after induction to bring the final concentration to 300 μM. The cells were grown for 20 hours at which point the fermentor was chilled to 10° C. and the cells were harvested by centrifugation. The cell pellet was stored at −80° C. until use.
The cell pellet from the fermentation was lysed by stirring in buffer with lysozyme and DNAse. Cell debris was removed by centrifugation and the supernatant was filtered through a 0.45 micron filter. Filtered supernatant was incubated with Ni-NTA agarose resin and then enzyme was eluted with imidazole. Purified FC4E pA06238 was immobilized onto 5.25 grams of ECR8204F resin using the standard published protocol from Purolite.
The immobilized enzyme was loaded into a 11×300 mm glass fixed bed reactor and run for approximately 200 h at constant temperature (60° C.) with a constant feed composition of 30 wt % fructose+70 wt % aqueous buffer solution (20 mM KPO4, 50 mM NaCl, 300 uM CoCl2). Feed rate was held constant at 140 uL/min throughout the run. The fixed bed reaction reached a maximal conversion of approximately 30% tagatose and had a half-life of −50 hours (
Top products related to «Centrifugation»
More about "Centrifugation"
This process allows for the purification, concentration, or isolation of various biological components, such as proteins, nucleic acids, organelles, and cells.
Centrifugation protocols can vary in terms of speed, duration, temperature, and rotor type, depending on the specific application and sample characteristics.
Optimizing these parameters is crucial for ensuring the reproducibility and reliability of experimental results.
Some common applications of centrifugation include protein purification using techniques like precipitation, dialysis, and column chromatography; nucleic acid extraction using reagents like TRIzol; cell fractionation for the isolation of organelles like mitochondria, lysosomes, and nuclei; and flow cytometry sample preparation on instruments like FACSCalibur.
Researchers can leverage the power of AI-driven platforms like PubCompare.ai to easily locate, compare, and identify the best centrifugation methods and products to enhance their research workflows and improve data quality.
By providing data-driven insights and recommendations, PubCompare.ai can help researchers optimize their centrifugation protocols and take their work to the next level.
Synonyms and related terms: sedimentation, ultracentrifugation, density gradient centrifugation, cell fractionation, protein purification, nucleic acid extraction, flow cytometry, protease inhibitor cocktail, fetal bovine serum (FBS), PVDF membranes, BCA protein assay kit.
Abbreviations: FBS, PVDF, BCA, FACSCalibur, TRIzol.