Example 1
95 g of manganese (purity: 99.95%; purchased from Taewon Scientific Co., Ltd.) and 5 g of high-purity graphite (purity: 99.5%; purchased from Taewon Scientific Co., Ltd.) were placed in a water-cooled copper crucible of an argon plasma arc melting apparatus (manufactured by Labold AG, Germany, Model: vacuum arc melting furnace Model LK6/45), and melted at 2,000 K under an argon atmosphere. The melt was cooled to room temperature at a cooling rate of 104 K/min to obtain an alloy ingot. The alloy ingot was crushed to a particle size of 1 mm or less by hand grinding. Thereafter, the obtained powders were magnetically separated using a Nd-based magnet to remove impurities repeatedly, and the Mn4C magnetic powders were collected. The collected Mn4C magnetic powders were subjected to X-ray diffraction (XRD) analysis (measurement system: D/MAX-2500 V/PO, Rigaku; measurement condition: Cu—Kα ray) and energy-dispersive X-ray spectroscopy (EDS) using FE-SEM (Field Emission Scanning Electron Microscope, MIRA3 LM).
FIGS. 2(a) and 2 (b) show an X-ray diffraction pattern and an energy-dispersive X-ray spectroscopy graph of the Mn4C magnetic material produced according to Example 1 of the present disclosure, respectively.
As can be seen in FIG. 2(a), the Mn4C magnetic material showed diffraction peaks of (111), (200), (220), (311) and (222) crystal planes at 2θ values of 40°, 48°, 69°, 82° and 88°, respectively, in the XRD analysis. Thus, it can be seen that the XRD patterns of the Mn4C magnetic material produced according to Example 1 are well consistent with the patterns of the cubic perovskite Mn4C. In addition, the Mn4C magnetic material shows several very weak diffraction peaks that can correspond to Mn23C6 and Mn. That is, the diffraction peak intensity at 2θ values of 43° and 44°, which correspond to Mn and Mn23C6 impurities, is as very low as about 2.5% of the diffraction intensity of the peak corresponding to the (111) plane. Through this, it can be seen that the powders obtained in Example 1 have high-purity Mn4C phase. The lattice parameter of the Mn4C is estimated to be about 3.8682 Å.
FIG. 2(b) shows the results of analyzing the atomic ratio of Mn:C in the powder by EDS. The atomic ratio of Mn:C is 80.62:19.38, which is very close to 4:1 within the experimental uncertainties. Thus, it can be seen that the powder is also confirmed to be Mn4C.
The M-T curve of the field aligned Mn4C powder obtained in Example 1 was measured under an applied field of 4 T and at a temperature ranging from 50 K to 400 K. Meanwhile, the M-T curve of the randomly oriented Mn4C powder was measured under an applied field of 1 T. The Curie temperature of Mn4C was measured under 10 mT while decreasing temperature from 930 K at a rate of 20 K/min.
FIGS. 3(a) to 3(c) show the M-T curves of the Mn4C magnetic material, produced according to Example 1 of the present disclosure, under magnetic fields of 4 T, 1 T, and 10 mT, respectively.
FIG. 3 shows magnetization-temperature (M-T) curves indicating the results of measuring the temperature-dependent magnetization intensity of the Mn4C magnetic material, produced in Example 1, using the vibrating sample magnetometer (VSM) mode of Physical Property Measurement System (PPMS®) (Quantum Design Inc.).
According to the Néel theory, the ferrimagnets that contain nonequivalent substructures of magnetic ions may have a number of unusual forms of M-T curves below the Curie temperature, depending on the distribution of magnetic ions between the substructures and on the relative value of the molecular field coefficients. The anomalous M-T curves of Mn4C, as shown in FIG. 3(a), can be explained to some extent by the Néel's P-type ferrimagnetism, which appears when the sublattice with smaller moment is thermally disturbed more easily. For Mn4C with two sublattices of MnI and MnII, as shown in FIG. 1, the MnI sublattice might have smaller moment.
FIG. 3(a) shows the temperature dependence of magnetization of the Mn4C magnetic material produced in Example 1. The magnetization of Mn4C measured at 4.2K is 6.22 Am2/kg (4 T), corresponding to 0.258μB per unit cell. The magnetization of the Mn4C magnetic material varies little at temperatures below 50 K, and is quite different from that of most magnetic materials, which undergo a magnetization deterioration with increasing temperature due to thermal agitation. Furthermore, the magnetization of the Mn4C magnetic material increases linearly with increasing temperature at temperatures above 50 K. The linear fitting of the magnetization of Mn4C at 4 T within the temperature range of 100 K to 400 K can be written as M=0.0072T+5.6788, where M and T are expressed in Am2/kg and K, respectively. Thus, the temperature coefficient of magnetization of Mn4C is estimated to be about ˜2.99*10−4μB/K per unit cell. The mechanisms of the anomalous thermomagnetic behaviors of Mn4C may be related to the magnetization competition of the two ferromagnetic sublattices (MnI and MnII) as shown in FIG. 1.
FIG. 3(b) shows the M-T curves of the Mn4C powders at temperatures within the range of 300 K to 930 K under 1 T. The linear magnetization increment stops at 590 K, above which the magnetization of Mn4C starts to decrease slowly first and then sharply at a temperature of about 860 K. The slow magnetization decrement at temperatures above 590 K is ascribed to the decomposition of Mn4C, which is proved by further heat-treatment of Mn4C as described below.
According to one embodiment of the present disclosure, the saturation magnetization of Mn4C increases linearly with increasing temperature within the range of 50 K to 590 K and remains stable at temperatures below 50 K. The increases in anomalous magnetization of Mn4C with increasing temperature can be considered in terms of the Néel's P-type ferrimagnetism. At temperatures above 590 K, the Mn4C decomposes into Mn23C6 and Mn, which are partially oxidized into the manganosite when exposed to air. The remanent magnetization of Mn4C varies little with temperature. The Curie temperature of Mn4C is about 870 K. The positive temperature coefficient (about 0.0072 Am2/kgK) of magnetization in Mn4C is potentially important in controlling the thermodynamics of magnetization in magnetic materials.
The Curie temperature Te of Mn4C is measured to be about 870 K, as shown in FIG. 3(c). Therefore, the sharp magnetization decrement of Mn4C at temperatures above 860 K is ascribed to both the decomposition of Mn4C and the temperature near the Tc of Mn4C.
FIG. 4 is a graph showing the magnetic hysteresis loops of the Mn4C magnetic material, produced according to Example 1 of the present disclosure, at 4.2 K, 200 K and 400 K. The magnetic hysteresis loops were measured by using the PPMS system (Quantum Design) under a magnetic field of 7 T while the temperature was changed from 4 K to 400 K.
As shown in FIG. 4, the positive temperature coefficient of magnetization was further proved by the magnetic hysteresis loops of Mn4C as shown in FIG. 4. The Mn4C shows a much higher magnetization at 400 K than that at 4.2 K. Moreover, the remanent magnetization of Mn4C varies little with temperature and is Δ3.5 Am2/kg within the temperature range of 4.2 K to 400 K. The constant remanent magnetization of Mn4C within a wide temperature range indicates the high stability of magnetization against thermal agitation. The coercivities of Mn4C at 4.2 K, 200 K, and 400 K were 75 mT, 43 mT, and 33 mT, respectively.
The magnetic properties of Mn4C measured are different from the previous theoretical results. A corner MnI moment of 3.85μB antiparallel to three face-centered MnII moments of 1.23μB in Mn4C was expected at 77 K. The net moment per unit cell was estimated to be 0.16μB. In the above experiment, the net moment in pure Mn4C at 77 K is 0.26μB/unit cell, which is much larger than that expected by Takei et al. It was reported that the total magnetic moment of Mn4C was calculated to be about 1μB, which is almost four times larger than the 0.258μB per unit cell measured at 4.2 K, as shown in FIG. 4.
FIG. 5 is an enlarged view of the temperature-dependent XRD patterns of the Mn4C magnetic material produced according to Example 1 of the present disclosure.
The thermomagnetic behaviors of Mn4C are related to the variation in the lattice parameters of Mn4C with temperature. It is known that the distance of near-neighbor manganese atoms plays an important role in the antiferro- or ferro-magnetic configurations of Mn atoms. Ferromagnetic coupling of Mn atoms is possible only when the Mn—Mn distance is large enough. FIG. 5 shows the diffraction peaks of the (111) and (200) planes of Mn4C at temperatures from 16 K to 300 K. With increasing temperature, both (111) and (200) peaks of Mn4C shifted to a lower degree at temperatures between 50 K and 300 K, indicating an enlarged distance of Mn—Mn atoms in Mn4C. No peak shift is obviously observed for Mn4C at temperatures below 50 K. The distance of nearest-neighbor manganese atoms plays an important role in the antiferro- or ferro-magnetic configurations of Mn atoms and thus has a large effect on the magnetic properties of the compounds.
Thus, it can be seen that the abnormal increase in magnetization of Mn4C with increasing temperature occurs due to the variation in the lattice parameters of Mn4C with temperature.
The powder produced in Example 1 was annealed in vacuum for 1 hour at each of 700 K and 923 K, and then subjected to X-ray spectroscopy, and the results thereof are shown in FIG. 6.
The magnetization reduction of Mn4C at temperatures above 590 K is ascribed to the decomposition of Mn4C, which is proved by the XRD patterns of the powders after annealing Mn4C at elevated temperatures. FIG. 6 shows the structural evolution of Mn4C at elevated temperatures. When Mn4C is annealed at 700 K, a small fraction of Mn4C decomposes into a small amount of Mn23C6 and Mn. The presence of manganosite is ascribed to the spontaneous oxidation of the Mn precipitated from Mn4C when exposed to air after annealing. The fraction of Mn23C6 was enhanced significantly for Mn4C annealed at 923 K, as shown in FIG. 6.
These results prove that the metastable Mn4C decomposes into stable Mn23C6 at temperatures above 590 K. The presence of Mn4C in the powder annealed at 923 K indicates a limited decomposition rate of Mn4C, from which the Tc of Mn4C can be measured. Both Mn23C6 and Mn are weak paramagnets at ambient temperature and elevated temperatures. Therefore, the magnetic transition of the Mn4C magnetic material at 870 K is ascribed to the Curie point of the ferrimagnetic Mn4C.
The Mn4C shows a constant magnetization of 0.258μB per unit cell below 50 K and a linear increment of magnetization with increasing temperature within the range of 50 K to 590 K, above which Mn23C6 precipitates from Mn4C. The anomalous M-T curves of Mn4C can be considered in terms of the Néel's P-type ferrimagnetism.