The largest database of trusted experimental protocols
> Procedures > Laboratory Procedure > Gel Chromatography

Gel Chromatography

Gel chromatography is a powerful analytical technique used to separate and purify biomolecules based on their size and shape.
This process involves passing a sample through a porous gel matrix, where larger molecules elute faster than smaller ones.
Researchers can leverage PubCompare.ai to optimize their gel chromatography workflows by accessing the most reliable and reproducible protocols from the literature, preprints, and patents.
The AI-driven comparisons provided by PubCompare.ai help identify the best methods, enhancing research accuracy and productivity.
By streamlining gel chromatography experiments with the power of PubCompare.ai, scientists can focus on generating high-quaility, reproducible results and advancing their field of study.

Most cited protocols related to «Gel Chromatography»

The inhibitor JQ1 was synthesized in both racemic and enantiomerically pure format using the synthetic route outlined in Scheme S1 and Scheme S2 and its structure was fully characterized. Human bromodomains were expressed in bacteria as His-tagged proteins and were purified by nickel-affinity and gel-filtration chromatography. Proteins integrity was assessed by SDS-PAGE and Electro-spray Mass Spectrometry on an Agilent 1100 Series LC/MSD TOF. All crystallizations were carried out at 4 °C using the sitting drop vapour-diffusion method. X-ray diffraction data were collected at the Swiss Light source beamline X10SA, or using a Rigaku FR-E generator. Structures were determined by molecular replacement. Isothermal titration calorimetry experiments were performed at 15 °C on a VP-ITC titration microcalorimeter (MicroCal). Thermal melting experiments were carried out on a Mx3005p RT- PCR machine (Stratagene) using SYPRO Orange as a fluorescence probe. Dose-ranging small-molecule studies of proliferation were performed in white, 384-well plates (Corning) in DMEM media containing 10 % FBS. Compounds were delivered with a PerkinElmer JANUS pin-transfer robot and Envision multilabel plate-reader, using a commercial assay (Cell TiterGlo). Murine xenografts were established by injecting NMC cells in 30 % Matrigel (BD Biosciences) into the flank of 6 week-old female NCr nude mice (Charles River Laboratories). Tumor measurements were assessed by caliper measurements, and volume calculated using the formula Vol = 0.5 × L × W2 (link). All mice were humanely euthanized, and tumors were fixed in 10 % formalin for histopathological examination. Quantitative immunohistochemistry was performed using the Aperio Digital Pathology Environment (Aperio Technologies, Vista, CA) at the DF/HCC Core Laboratory at the Brigham and Women’s Hospital.
Publication 2010
Bacteria Biological Assay Calorimetry Cells Crystallization Diffusion Females Fluorescent Probes Formalin Gel Chromatography Heterografts Homo sapiens Immunohistochemistry Mass Spectrometry matrigel Mice, Nude Mus Neoplasms Nickel Proteins Reverse Transcriptase Polymerase Chain Reaction Rivers SDS-PAGE Titrimetry TNFSF14 protein, human Woman X-Ray Diffraction
SAXS data were collected at beamline 12.3.1 of the Advanced Light Source at the Lawrence Berkeley National Laboratory2 (link). SAXS data were collected as a 2/3rds dilution series using 20 uL samples and three different exposures. Exposures generally follow a short, medium and long time consisting of 0.1, 1 and 6 seconds or 0.5, 1 and 8 seconds and were merged as described10 (link). Samples after gel-filtration purification eluted within the range of 1.5 and 3 mg/mL and for each sample, buffer was collected from the gel-filtration column after 1.2 column volumes for corresponding matching SAXS buffers.
For each sample, aggregation and interparticle interference was assessed using overlay plots of the concentration series in Gnuplot (http://www.gnuplot.org). Fits to the Guinier region (q⋅Rg < 1.3) were performed with software at beamline 12.3.1 (Robert Rambo, Lawrence Berkeley National Lab) and all data graphs were prepared with Kaleidagraph (http://www.synergy.com) and gnuplot. Figures with structural models were prepared with VMD and rendered with Povray (http://www.povray.org).
Publication 2013
Buffers Gel Chromatography Light Neoplasm Metastasis Seizures Technique, Dilution
To purify the RBD/ACE2 complex, human ACE2 and RBD were incubated together, and then the complex was purified on Superdex200 gel filtration chromatography. RBD/ACE2 crystals were grown in sitting drops at room temperature over wells containing 100 mM Tris (pH 8.5), 18-20% PEG 6000, and 100 mM NaCl. Crystals were soaked briefly in 100 mM Tris (pH 8.5), 30% PEG 6000, 100 mM NaCl, and 30% ethylene glycol before being flash-frozen in liquid nitrogen. X-ray diffraction data were collected at the Advanced Photon Source beamline 24-ID-E. The structure was determined by molecular replacement using the structure of human ACE2 complexed with SARS-CoV RBD as the search template (Protein Data Bank accession code 2AJF). Structure data and refinement statistics are shown in Extended Data Table.1.
Publication 2020
ACE2 protein, human Freezing Gel Chromatography Glycol, Ethylene Homo sapiens Nitrogen Polyethylene Glycol 6000 Severe acute respiratory syndrome-related coronavirus Sodium Chloride Tromethamine X-Ray Diffraction
All yeast strains and plasmids used in this study are listed in Supplemental Tables 3 and 4. Media and genetic and microbial techniques were as described27 . Immunoblotting and SDS-PAGE were as described28 (link). Kinetochore particles were isolated by affinity-purifying Dsn1-FLAG or Dsn1-HIS-FLAG protein using a modified minichromosome purification protocol11 (link) (see full methods). A typical concentration of Dsn1-FLAG or Dsn1-HIS-FLAG was ~4 μg/ml (60 nM). Size-exclusion chromatography was carried out on a Sephacryl S-500 HR column (Amersham). Estimation of Stokes radii was obtained using a high-molecular weight calibration kit (BioRad) and the void volume of the column was determined using 500 nm polystyrene beads (Polysciences Inc.). Mass spectrometry was performed as described11 (link). TIRF microscopy and flow cell preparation were performed as previously described16 (link),18 (link). Purified Dsn1-HIS-FLAG kinetochore particles were linked to polystyrene beads via biotinylated anti-penta-HIS antibody, essentially as described16 (link). The laser trap has also been described previously16 (link)-19 (link).
Full Methods and any associated references are available in the online version of the paper at www.nature.com/nature.
Publication 2010
Birth Cells Gel Chromatography Immunoglobulins Kinetochores Mass Spectrometry Microscopy natural heparin pentasaccharide Plasmids Polystyrenes Proteins Radius SDS-PAGE Strains Urination Yeast, Dried
GluClcryst was expressed from baculovirus-infected Sf9 cells and purified by metal ion affinity chromatography. The Fab complex was isolated by size-exclusion chromatography. The GluClcryst-Fab complex was concentrated to 1-2 mg/mL and supplemented with synthetic lipids and ivermectin. Crystallization was performed by hanging drop vapor diffusion at 4°C with a precipitating solution containing 21-23% PEG 400, 50 mM sodium citrate pH 4.5 and 70 mM sodium chloride. Cryoprotection was achieved by soaking crystals in precipitant solution supplemented with 30% PEG 400. Additional complexes were obtained by soaking crystals in cryoprotectant containing L-glutamate, picrotoxin or sodium iodide. Diffraction data were indexed, integrated and scaled and the structure solved by molecular replacement using a GLIC-derived homology model of GluClcryst and a Fab homology model as search probes. The molecular replacement phases were used to initiate autobuilding and the resulting model was iteratively improved by cycles of manual adjustment and crystallographic refinement. Function of GluCl was examined by two-electrode voltage clamp experiments and by [3H]-L-glutamate saturation and competition binding assays.
Publication 2011
Baculoviridae Biological Assay Chromatography, Affinity Cryoprotective Agents Crystallization Crystallography Diffusion Gel Chromatography Glutamate Ivermectin Lipids Metals Picrotoxin polyethylene glycol 400 Sf9 Cells Sodium Chloride Sodium Citrate Sodium Iodide

Most recents protocols related to «Gel Chromatography»

Example 11

[Figure (not displayed)]

Step a: To a stirred suspension of 2,4-dichloro-6-methyl-3-nitropyridine (2.5 g, 12 mmol) in 24 mL of THE was added a solution of 7N NH3 in MeOH (14 mL, 98 mmol). After stirring for 3 h, the volatiles were removed in vacuo. The crude residue was purified by silica gel column chromatography to give 2-chloro-6-methyl-3-nitropyridin-4-amine. C6H7CN3O2 [M+H]+ 188.0, found 188.0.

Step b: To a stirred mixture of 2-chloro-6-methyl-3-nitropyridin-4-amine (760 mg, 4.1 mmol) and Fe (1.1 g, 20 mmol) in a 5:1 solution of EtOH/H2O (24 mL) was added 4.4 mL of conc. HCl. The contents were refluxed for 30 min, then cooled to room temperature and quenched with 100 mL of sat. NaHCO3 (aq). The mixture was extracted with EtOAc and the combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo to yield 2-chloro-6-methylpyridine-3,4-diamine. MS: (ES) m/z calculated for C6H9ClN3 [M+H]+ 158.0, found 158.0.

Step c: To a stirred solution of 2-chloro-6-methylpyridine-3,4-diamine (0.49 g, 3.1 mmol) in 3 mL of EtOH was added a 40% w/w aqueous solution of glyoxal (2.0 mL, 12 mmol). After refluxing for 16 h, the mixture was diluted with H2O and extracted with EtOAc. The organic layers were combined, dried over MgSO4, filtered and concentrated in vacuo. The crude residue was purified by silica gel column chromatography to give 5-chloro-7-methylpyrido[3,4-b]pyrazine. MS: (ES) m/z calculated for C8H7ClN3 [M+H]+ 180.0, found 180.1.

Step d: To a stirred solution of 5-chloro-7-methylpyrido[3,4-b]pyrazine (200 mg, 1.0 mmol) and 2′-chloro-2-methyl-3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-amine (350 mg, 1.0 mmol) in 2 mL of MeCN was added AcOH (0.18 mL, 3.1 mmol). After 30 min, the volatiles were concentrated in vacuo. The crude residue was purified by silica gel column chromatography to give N-(2′-chloro-2-methyl-3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-7-methylpyrido[3,4-b]pyrazin-5-amine. MS: (ES) m/z calculated for C27H29BClN4O2 [M+H]+ 487.2, found 487.2.

Step e: To a stirred solution of N-(2′-chloro-2-methyl-3′-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[1,1′-biphenyl]-3-yl)-7-methylpyrido[3,4-b]pyrazin-5-amine (390 mg, 0.66 mmol), 6-chloro-2-methoxynicotinaldehyde (240 mg, 1.4 mmol), and K3PO4 (490 mg, 2.3 mmol) in a 1:1 solution of 1,4-dioxane/H2O (3.3 mL) under N2 (g) was added Pd(PPh3)4 (76 mg, 0.066 mmol). The mixture was stirred under N2 (g) at 90° C. for 3 h. The mixture was diluted with H2O and then extracted with EtOAc. The combined organic layers were dried over MgSO4, filtered, and concentrated. The crude residue was purified by silica gel column chromatography to give 6-(2-chloro-2′-methyl-3′-((7-methylpyrido[3,4-b]pyrazin-5-yl)amino)-[1,1′-biphenyl]-3-yl)-2-methoxynicotinaldehyde. MS: (ES) m/z calculated for C28H23ClN5O2 [M+H]+ 496.2, found 496.2.

Step f: To a stirred mixture of 6-(2-chloro-2′-methyl-3′-((7-methylpyrido[3,4-b]pyrazin-5-yl)amino)-[1,1′-biphenyl]-3-yl)-2-methoxynicotinaldehyde (120 mg, 0.25 mmol), (S)-5-(aminomethyl)pyrrolidin-2-one hydrochloride (150 mg, 0.99 mmol), and trimethylamine (0.14 mL, 0.99 mmol) in a 4:1 solution of DCM/MeOH (5 mL) was added NaBH(OAc)3 (530 mg, 2.5 mmol). After stirring for 30 min, the mixture was filtered through Celite, and the filtrate was concentrated in vacuo. The product was purified by preparative HPLC to give the product (S)-5-((((6-(2-chloro-2′-methyl-3′-((7-methylpyrido[3,4-b]pyrazin-5-yl)amino)-[1,1′-biphenyl]-3-yl)-2-hydroxypyridin-3-yl)methyl)amino)methyl)pyrrolidin-2-one. 1H NMR (400 MHz, DMSO-d6) δ 12.59 (s, 1H), 9.32 (s, 1H), 9.07 (d, J=2.0 Hz, 1H), 8.86 (d, J=2.0 Hz, 1H), 8.23 (d, J=8.7 Hz, 1H), 7.76 (d, J=7.0 Hz, 1H), 7.62 (s, 1H), 7.55 (d, J=7.5 Hz, 1H), 7.50-7.43 (m, 1H), 7.35 (dd, J=7.9, 7.9 Hz, 1H), 7.12 (s, 1H), 6.96 (d, J=7.5 Hz, 1H), 6.55 (s, 2H), 6.43 (d, J=7.1 Hz, 1H), 4.07 (s, 3H), 3.95-3.84 (m, 1H), 2.48 (s, 4H), 2.26-2.15 (m, 3H), 2.11 (s, 3H), 1.86-1.70 (m, 1H). MS: (ES) m/z calculated for C32H31ClN7O2 [M+H]+ 580.2, found 580.1.

Full text: Click here
Patent 2024
1H NMR 2-picoline 4-nitropyridine Amines Bicarbonate, Sodium Celite Chromatography Diamines Dioxanes diphenyl Ethanol Gel Chromatography Glyoxal High-Performance Liquid Chromatographies Pyrazines Silica Gel Silicon Dioxide Sulfate, Magnesium Sulfoxide, Dimethyl trimethylamine

Example 1

<Step (A): Synthesis of porous particle having glycidyl group>

27.8 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 11.3 g of glycerin-1,3-dimethacrylate (trade name: NK Ester 701, SHIN-NAKAMURA CHEMICAL Co., Ltd.), and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were dissolved in 58.7 g of diethyl succinate as a diluent, and nitrogen gas was bubbled for 30 minutes to provide an oil phase.

Next, separately from the oil phase, 10.0 g of PVA-224 (manufactured by Kuraray Co., Ltd., polyvinyl alcohol having a degree of saponification of 87.0% to 89.0%) as a dispersion stabilizer and 10.0 g of sodium chloride as a salting-out agent were dissolved in 480 g of ion exchanged water to provide an aqueous phase.

The aqueous phase and the oil phase were placed in a separable flask and dispersed at a rotation speed of 430 rpm for 20 minutes using a stirring rod equipped with a half-moon stirring blade, then the inside of the reactor was purged with nitrogen, and the reaction was carried out at 60° C. for 16 hours.

After that, the resulting polymer was transferred onto a glass filter and thoroughly washed with hot water at about 50 to 80° C., denatured alcohol, and water in the order presented to obtain 100.4 g of a porous particle (carrier al).

The amount of glycidyl methacrylate used was 79.8 mol % based on the total amount of the monomers, and the amount of glycerin-1,3-dimethacrylate used was 20.2 mol % based on the total amount of the monomers.

<Step (B): Introduction reaction of alkylene group>

98 g of the carrier α1 was weighed onto a glass filter and thoroughly cleaned with diethylene glycol dimethyl ether. After cleaning, the carrier α1 was placed in a 1 L separable flask, 150 g of diethylene glycol dimethyl ether and 150 g (920 mol % based on glycidyl methacrylate) of 1,4-butanediol were placed in the separable flask, and stirring and dispersion were carried out.

After that, 1.5 ml of a boron trifluoride diethyl ether complex was added, the temperature was raised to 80° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 4 hours.

The mixture was cooled, then the porous particle (carrier β1) bonded to a diol compound including an alkylene group in the structure thereof was collected by filtration and then washed with 1 L of ion exchanged water to obtain 152 g of a carrier β1.

The progress of the reaction was confirmed by the following procedure.

A part of the dry porous particle into which an alkylene group had been introduced was mixed with potassium bromide, and the resulting mixture was pelletized by applying a pressure and then measured using FT-IR (trade name: Nicolet (registered trademark) iS10, manufactured by Thermo Fisher Scientific Inc.) to check the height of an absorbance peak at 908 cm−1 due to the glycidyl group in the infrared absorption spectrum.

As a result, no absorbance peak at 908 cm−1 was observed by FT-IR.

<Step (C): Introduction Reaction of Glycidyl Group>

150 g of the carrier β1 was weighed onto a glass filter and thoroughly cleaned with dimethylsulfoxide.

After cleaning, the carrier β1 was placed in a separable flask, 262.5 g of dimethyl sulfoxide and 150 g of epichlorohydrin were added, the resulting mixture was stirred at room temperature, 37.5 ml of a 30% sodium hydroxide aqueous solution (manufactured by KANTO CHEMICAL CO., INC.) was further added, and the resulting mixture was heated to 30° C. and stirred for 6 hours.

After completion of the reaction, the obtained product was transferred onto a glass filter and thoroughly washed with water, acetone, and water in the order presented to obtain 172 g of a porous particle into which a glycidyl group had been introduced (carrier γ1).

The introduction density of the glycidyl group in the obtained carrier γ1 was measured by the following procedure.

5.0 g of the carrier γ1 was sampled, and the dry mass thereof was measured and as a result, found to be 1.47 g. Next, the same amount of the carrier γ1 was weighed into a separable flask and dispersed in 40 g of water, 16 mL of diethylamine was added while stirring at room temperature, and the resulting mixture was heated to 50° C. and stirred for 4 hours. After completion of the reaction, the reaction product was transferred onto a glass filter and thoroughly washed with water to obtain a porous particle A into which diethylamine had been introduced.

The obtained porous particle A was transferred into a beaker and dispersed in 150 mL of a 0.5 mol/L potassium chloride aqueous solution, and titration was carried out using 0.1 mol/L hydrochloric acid with the point at which the pH reached 4.0 as the neutralization point.

From this, the amount of diethylamine introduced into the porous particle A into which diethylamine had been introduced was calculated, and the density of the glycidyl group of the carrier γ1 was calculated from the following expression.

As a result, the density of the glycidyl group was 880 μmol/g.
Density(μmol/g) of glycidyl group={0.1×volume(μL) of hydrochloric acid at neutralization point/dry mass(g) of porous particle into which glycidyl group has been introduced}<Step (D): Introduction Reaction of Polyol>

150 g of the carrier γ1, 600 mL of water, and 1000 g (13000 mol % based on glycidyl group) of D-sorbitol (log P=−2.20, manufactured by KANTO CHEMICAL CO., INC.) were placed in a 3 L separable flask and stirred to form a dispersion.

After that, 10 g of potassium hydroxide was added, the temperature was raised to 60° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 15 hours.

The mixture was cooled, and then the reaction product was collected by filtration and washed thoroughly with water to obtain 152 g of a porous particle into which polyol had been introduced (carrier 61).

The obtained carrier 61 was classified into 16 to 37 μm using a sieve to obtain 140.5 g of a packing material 1.

<Evaluation of Alkali Resistance>

The alkali resistance was evaluated by calculating the amount of a carboxy group produced by hydrolysis of sodium hydroxide according to the following procedure.

First, 4 g of the packing material was dispersed in 150 mL of a 0.5 mol/L potassium chloride aqueous solution, and titration was carried out using 0.1 mol/L sodium hydroxide aqueous solution with the point at which the pH reached 7.0 as the neutralization point. From this, the amount of a carboxy group before hydrolysis included in the packing material was calculated from the following expression.
Amount(μmol/mL) of carboxy group=0.1×volume(μL) of sodium hydroxide aqueous solution at the time of neutralization/apparent volume (mL) of packing material

Here, the apparent volume of the packing material is the volume of the packing material phase measured after preparing a slurry liquid by dispersing 4 g of the packing material in water, transferring the slurry liquid to a graduated cylinder, and then allowing the same to stand for a sufficient time.

Subsequently, 4 g of the packing material was weighed into a separable flask, 20 mL of a 5 mol/L sodium hydroxide aqueous solution was added, and the resulting mixture was treated at 50° C. for 20 hours while stirring at 200 rpm. The mixture was cooled, then the packing material was collected by filtration, then washed with a 0.1 mol/L HCl aqueous solution and water in the order presented, and the amount of a carboxy group contained in the obtained packing material was calculated by the same method as above. From the difference between the amount of a carboxy group before and that after the reaction with the 5 mol/L sodium hydroxide aqueous solution, the amount of a carboxy group produced by the reaction with the 5 mol/L sodium hydroxide aqueous solution was calculated. As a result, the amount of a carboxy group produced was 21 μmol/mL.

If the amount of a carboxy group produced is 40 μmol/mL or less, the alkali resistance is considered to be high.

<Evaluation of Non-Specific Adsorption>

The obtained packing material was packed into a stainless steel column (manufactured by Sugiyama Shoji Co., Ltd.) having an inner diameter of 8 mm and a length of 300 mm by a balanced slurry method. Using the obtained column, a non-specific adsorption test was carried out by the method shown below.

The column packed with the packing material was connected to a Shimadzu Corporation HPLC system (liquid feed pump (trade name: LC-10AT, manufactured by Shimadzu Corporation), autosampler (trade name: SIL-10AF, manufactured by Shimadzu Corporation), and photodiode array detector (trade name: SPD-M10A, manufactured by Shimadzu Corporation)), and a 50 mmol/L sodium phosphate buffer aqueous solution as a mobile phase was passed at a flow rate of 0.6 mL/min.

Using the same sodium phosphate aqueous solution as the mobile phase as a solvent, their respective sample solutions of 0.7 mg/mL thyroglobulin (Mw of 6.7×105), 0.6 mg/mL γ-globulin (Mw of 1.6×105), 0.96 mg/mL BSA (Mw of 6.65×104), 0.7 mg/mL ribonuclease (Mw of 1.3×104), 0.4 mg/mL aprotinin (Mw of 6.5×103), and 0.02 mg/mL uridine (Mw of 244) (all manufactured by Merck Sigma-Aldrich) are prepared, and 10 μL of each is injected from the autosampler.

The elution time of each observed using the photodiode array detector at a wavelength of 280 nm was compared to confirm that there was no contradiction between the order of elution volume and the order of molecular weight size.

As a result, the elution volumes of the samples from the column packed with the packing material 1 were 8.713 mL, 9.691 mL, 9.743 mL, 10.396 mL, 11.053 mL, and 11.645 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced. When there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof, there was no non-specific adsorption, which is indicated as 0 in Table 1, and when there was a contradiction therebetween, non-specific adsorption was induced, which is thus indicated as X.

The porous particle (carrier al) obtained in the same manner as in Example 1 was subjected to the step D of Example 1.

<Step (D): Introduction Reaction of Polyol>

98 g of carrier al, 600 mL of water, and 1000 g (3050 mol % based on glycidyl group) of D-sorbitol (manufactured by KANTO CHEMICAL CO., INC.) were placed in a 3 L separable flask and stirred to form a dispersion.

After that, 10 g of potassium hydroxide was added, the temperature was raised to 60° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 15 hours.

The mixture was cooled, and then the reaction product was collected by filtration and washed thoroughly with water to obtain 130 g of a porous particle into which a polyol had been introduced (carrier δ7).

The carrier δ7 was classified into 16 to 37 μm using a sieve to obtain 115 g of a packing material 7.

The alkali resistance of the obtained packing material 7 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced in the packing material 7 was 120.3 μmol/mL, resulting in poor alkali resistance.

Further, the non-specific adsorption of the obtained packing material 7 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.606 mL, 9.769 mL, 9.9567 mL, 10.703 mL, 11.470 mL, and 12.112 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

Example 2

A porous particle (carrier al) was obtained in the same manner as in Example 1, and then a packing material 2 was obtained as follows.

98 g of the carrier α1 was weighed onto a glass filter and thoroughly cleaned with diethylene glycol dimethyl ether.

After cleaning, the porous particle was placed in a 1 L separable flask, 150 g of diethylene glycol dimethyl ether and 150 g (580 mol % based on the glycidyl group) of 1,4-cyclohexanedimethanol were placed in the separable flask, and stirring and dispersion were carried out.

After that, 1.5 ml of a boron trifluoride diethyl ether complex was added, the temperature was raised to 80° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 4 hours.

The mixture was cooled, then the resulting porous particle (carrier $2) bonded to a diol compound including an alkylene group in the structure thereof was collected by filtration and then washed with 1 L of ion exchanged water to obtain 165 g of a carrier 32.

The progress of the reaction was confirmed by the following procedure.

A part of the dry porous particle into which an alkylene group had been introduced was mixed with potassium bromide, and the resulting mixture was pelletized by applying a pressure and then measured using FT-IR (trade name: Nicolet (registered trademark) iS10, manufactured by Thermo Fisher Scientific Inc.) to check the height of a absorbance peak at 908 cm−1 due to the glycidyl group in the infrared absorption spectrum.

As a result, no absorbance peak at 908 cm−1 was observed by FT-IR.

<Step (C): Introduction Reaction of Glycidyl Group>

150 g of the carrier $2 was weighed onto a glass filter and thoroughly cleaned with dimethylsulfoxide. After cleaning, the carrier $2 was placed in a separable flask, 262.5 g of dimethyl sulfoxide and 150 g of epichlorohydrin were added, the resulting mixture was stirred at room temperature, 37.5 ml of a 30% sodium hydroxide aqueous solution (manufactured by KANTO CHEMICAL CO., INC.) was further added, and the resulting mixture was heated to 30° C. and stirred for 6 hours. After completion of the reaction, the porous particle was transferred onto a glass filter and thoroughly washed with water, acetone, and water in the order presented to obtain 180 g of a porous particle into which a glycidyl group had been introduced (carrier γ2).

The introduction density of the glycidyl group in the obtained carrier γ2 was measured in the same manner as in Example 1. As a result, the density of the glycidyl group was 900 μmol/g.

<Step (D): Introduction Reaction of Polyol>

150 g of the carrier γ2 was weighed onto a glass filter and thoroughly cleaned with diethylene glycol dimethyl ether. After cleaning, the carrier γ2 was placed in a 1 L separable flask, 150 g of diethylene glycol dimethyl ether and 150 g (5760 mol % based on the glycidyl group) of ethylene glycol (log P=−1.36) were placed in the separable flask, and stirring and dispersion were carried out. After that, 1.5 mL of a boron trifluoride diethyl ether complex was added, the temperature was raised to 80° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 4 hours. The mixture was cooled, and then the reaction product was collected by filtration and washed thoroughly with water to obtain 152 g of a polyol-introduced porous particle (carrier δ2). The carrier δ2 was classified into 16 to 37 μm using a sieve to obtain 140.5 g of a packing material 2.

The alkali resistance of the obtained packing material 2 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced was 15.2 μmol/mL, and it was confirmed that the packing material 2 had excellent alkali resistance.

Further, the non-specific adsorption of the obtained packing material 2 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.814 mL, 9.635 mL, 9.778 mL, 10.37 mL, 10.898 mL, and 12.347 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

A packing material 8 was obtained in the same manner as in Example 1 except that 150 g of ethylene glycol was used instead of 1,4-butanediol as an alkylene group-introducing agent.

The alkali resistance of the obtained packing material 8 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced in the packing material 8 was 108.4 μmol/mL, resulting in poor alkali resistance.

Further, the non-specific adsorption of the obtained packing material 8 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 9.708 mL, 9.8946 mL, 10.6452 mL, 11.5374 mL, and 12.1656 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

Example 3

A carrier γ2 was obtained in the same manner as in Example 2.

150 g of the obtained carrier γ2 was weighed onto a glass filter and thoroughly cleaned with diethylene glycol dimethyl ether.

After cleaning, the porous particle was placed in a 1 L separable flask, 150 g of diethylene glycol dimethyl ether and 150 g of polyethylene glycol #200 (manufactured by KANTO CHEMICAL CO., INC., average molecular weight of 190 to 210, log P is unclear, but the close compound tetraethylene glycol (Mw of 194) has a log P of −2.02) (1790 mol % based on glycidyl group) were placed in the separable flask, and stirring and dispersion were carried out.

After that, 1.5 mL of a boron trifluoride diethyl ether complex was added, the temperature was raised to 80° C. while stirring at 200 rpm, and the resulting mixture was subjected to the reaction for 4 hours.

The mixture was cooled, and then the reaction product was collected by filtration and washed thoroughly with water to obtain 152 g of a porous particle into which a polyol had been introduced (carrier 63).

The carrier δ3 was classified into 16 to 37 μm using a sieve to obtain 140.5 g of a packing material 3.

The alkali resistance of the obtained packing material 3 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced was 16.1 μmol/mL, and it was confirmed that the packing material 3 had excellent alkali resistance.

Further, the non-specific adsorption of the obtained packing material 3 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.517 mL, 9.241 mL, 9.47 mL, 10.034 mL, 10.484 mL, and 11.927 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

A packing material 9 was obtained in the same manner as in Example 2 except that no glycidyl group was introduced and no polyol was introduced. That is, the carrier $2 obtained in the step (B) of Example 2 was used as the packing material 9.

The non-specific adsorption of the obtained packing material 9 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.590 mL, 10.316 mL, 9.603 mL, 10.484 mL, 13.863 mL, and 12.861 mL, and it was confirmed that there was a contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that non-specific adsorption was induced. Because of this, the alkali resistance was not evaluated.

Example 4

A packing material 4 was obtained in the same manner as in Example 3 except that 33.2 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 5.9 g of glycerin-1,3-dimethacrylate (trade name: NK Ester 701, SHIN-NAKAMURA CHEMICAL Co., Ltd.), 58.7 g of diethyl succinate, and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were used to provide an oil phase. The amount of glycidyl methacrylate used was 90.0 mol % based on the total amount of the monomers, and the amount of glycerin-1,3-dimethacrylate used was 10.0 mol % based on the total amount of the monomers.

The alkali resistance of the obtained packing material 4 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced was 11.5 μmol/mL, and it was confirmed that the packing material 4 had excellent alkali resistance.

Further, the non-specific adsorption of the obtained packing material 4 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 7.52 mL, 8.214 mL, 8.451 mL, 9.062 mL, 9.511 mL, and 11.915 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

A packing material 10 was obtained in the same manner as in Example 1 except that 150 g (480 mol % based on glycidyl methacrylate) of 1,10-decanediol was used instead of 1,4-butanediol as an alkylene group-introducing agent.

The non-specific adsorption of the obtained packing material 10 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 9.991 mL, 10.15 mL, 10.063 mL, 10.691 mL, 12.172 mL, and 11.531 mL, and it was confirmed that there was a contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that non-specific adsorption was induced. Because of this, the alkali resistance was not evaluated.

Example 5

A packing material 5 was obtained in the same manner as in Example 3 except that 21.5 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 17.6 g of glycerin-1,3-dimethacrylate (trade name: NK Ester 701, SHIN-NAKAMURA CHEMICAL Co., Ltd.), 58.7 g of diethyl succinate, and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were used to provide an oil phase.

The amount of glycidyl methacrylate used was 66.2 mol % based on the total amount of the monomers, and the amount of glycerin-1,3-dimethacrylate used was 33.8 mol % based on the total amount of the monomers.

The alkali resistance of the obtained packing material 5 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced was 18.3 μmol/mL, and it was confirmed that the packing material 5 had excellent alkali resistance.

Further, the non-specific adsorption of the obtained packing material 5 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.692 mL, 9.434 mL, 9.625 mL, 10.236 mL, 10.759 mL, and 12.457 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

A packing material 11 was obtained in the same manner as in Example 3 except that 13.7 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 25.4 g of glycerin-1,3-dimethacrylate (trade name: NK Ester 701, SHIN-NAKAMURA CHEMICAL Co., Ltd.), 58.7 g of diethyl succinate, and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were used to provide an oil phase. The amount of glycidyl methacrylate used was 46.4 mol % based on the total amount of the monomers, and the amount of glycerin-1,3-dimethacrylate used was 53.6 mol % based on the total amount of the monomers.

The non-specific adsorption of the obtained packing material 11 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 8.872 mL, 10.131 mL, 9.82 mL, 10.422 mL, 12.782 mL, and 12.553 mL, and it was confirmed that there was a contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that non-specific adsorption was induced. Because of this, the alkali resistance was not evaluated.

It was confirmed that the exclusion limit molecular weights of the packing materials obtained in Examples 1 to 6 and Comparative Examples 1 to 5 were all 1,000,000 or more.

Example 6

A packing material 6 was obtained in the same manner as in Example 3 except that 33.2 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 5.9 g of ethylene glycol dimethacrylate (trade name: NK Ester 1G, SHIN-NAKAMURA CHEMICAL Co., Ltd.), 29.3 g of butyl acetate, 29.3 g of chlorobenzene, and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were used to provide an oil phase. The amount of glycidyl methacrylate used was 88.7 mol % based on the total amount of the monomers, and the amount of ethylene glycol dimethacrylate used was 11.3 mol % based on the total amount of the monomers.

The alkali resistance of the obtained packing material 6 was evaluated in the same manner as in Example 1. As a result, the amount of a carboxy group produced was 12.5 μmol/mL, and it was confirmed that the packing material 6 had excellent alkali resistance.

Further, the non-specific adsorption of the obtained packing material 6 was evaluated in the same manner as in Example 1. As a result, the elution volumes of the samples were 9.613 mL, 10.427 mL, 10.444 mL, 11.066 mL, 11.582 mL, and 12.575 mL, and it was confirmed that there was no contradiction between the order of the molecular weights of the samples and the order of the elution volumes thereof and that no non-specific adsorption was induced.

A packing material 12 was obtained in the same manner as in Example 3 except that 37.1 g of glycidyl methacrylate (trade name: Blemmer G (registered trademark) manufactured by NOF Corporation), 2.0 g of glycerin-1,3-dimethacrylate (trade name: NK Ester 701, SHIN-NAKAMURA CHEMICAL Co., Ltd.), 58.7 g of diethyl succinate, and 1.9 g of 2,2′-azobis(2,4-dimethylvaleronitrile) were used to provide an oil phase. The amount of glycidyl methacrylate used was 96.7 mol % based on the total amount of the monomers, and the amount of glycerin-1,3-dimethacrylate used was 3.3 mol % based on the total amount of the monomers.

Packing into a stainless steel column using the obtained packing material 12 was attempted. However, the back pressure was high, making liquid feeding difficult, and this made it impossible to carry out the packing. Because of this, neither of the evaluations was able to be carried out.

Results of the above Examples and Comparative Examples are shown in Table 1.

From the above results, by adopting the configuration of the present invention, a packing material having suppressed non-specific adsorption and high alkali resistance can be obtained.

When no hydrophobic portion is provided or when the alkylene chain is short, the alkali resistance is low as shown in Comparative Examples 1 and 2. In addition, it was found that when the alkylene chain is too long or when no hydrophilic portion is provided, the hydrophobicity is strong, and non-specific adsorption is induced as shown in Comparative Examples 3 and 4. In addition, in Comparative Example 5 having many repeating units derived from a polyfunctional monomer, it was found that non-specific adsorption was induced, and in Comparative Example 6 having fewer repeating units derived from a polyfunctional monomer, it was found that the back pressure applied to the apparatus was high, making column packing difficult.

TABLE 1
Amount of
carboxy
Degree ofgroup
PolyfunctionalcrosslinkingNon-specificproduced
Monomer[mol %]Alkylene groupPolyoladsorption5)[μmol/mL]
Ex. 1GDMA1)20.2Butylene groupSorbitol21
Ex. 2GDMA20.2Cyclohexane-1,4-dimethyleneEG3)15.2
group
Ex. 3GDMA20.2Cyclohexane-1,4-dimethylenePEG2004)16.1
group
Ex. 4GDMA10Cyclohexane-1,4-dimethylenePEG20011.5
group
Ex. 5GDMA33.8Cyclohexane-1,4-dimethylenePEG20018.3
group
Ex. 6EDMA2)11.3Cyclohexane-1,4-dimethylenePEG20012.5
group
Comp.GDMA20.2Sorbitol120.3
Ex. 1
Comp.GDMA20.2Ethylene groupEG108.4
Ex. 2
Comp.GDMA20.2Cyclohexane-1,4-dimethyleneX
Ex. 3group
Comp.GDMA20.2Decanylene groupSorbitolX
Ex. 4
Comp.GDMA53.6Cyclohexane-1,4-dimethylenePEG200X
Ex. 5group
Comp.GDMA3.3Cyclohexane-1,4-dimethylenePEG200Unmeasurable
Ex. 6group
1)GDMA: Glycerin-1,3-dimethacrylate
2)EDMA: Ethylene glycol dimethacrylate
3)EG: Ethylene glycol
4)PEG200: Polyethylene glycol #200
5)◯: No non-specific adsorption, X: Non-specific adsorption

Full text: Click here
Patent 2024
A 300 Acetone Adsorption Alkalies Anabolism Aprotinin boron trifluoride Buffers butyl acetate butylene Butylene Glycols chlorobenzene COMP protocol Cyclohexane cyclohexanedimethanol diethylamine diethyl succinate diglyme Epichlorohydrin Esters Ethanol ethylene dimethacrylate Ethylenes Ethyl Ether Filtration G 130 gamma-Globulin Gel Chromatography Glycerin glycidyl methacrylate Glycol, Ethylene High-Performance Liquid Chromatographies Hydrochloric acid Hydrolysis Nitrogen Polyethylene Glycols Polymers polyol Polyvinyl Alcohol potassium bromide Potassium Chloride potassium hydroxide Pressure Ribonucleases Sodium Hydroxide sodium phosphate Solvents Sorbitol Stainless Steel Sulfoxide, Dimethyl tetraethylene glycol Thyroglobulin Titrimetry Uridine

Example 96

[Figure (not displayed)]

To a solution of methyl (2S,3R)-1-(7,8-dichloro-4-(1H-imidazol-1-yl)quinolin-2-yl)-3-hydroxypyrrolidine-2-carboxylate (30 mg, 0.0737 mmol) in THF (0.5 mL) was added TEA (0.051 mL, 0.369 mmol) and CDI (40 mg, 0.247 mmol). The resulting mixture was stirred for 2 hours. Methyl glycinate HCl salt (18.5 mg, 0.147 mmol) was then added. After 2 hours of stirring, the mixture was diluted with DCM (20 mL), washed with H2O (2×10 mL), brine (10 mL), and dried over Na2SO4. The crude was purified by silica gel chromatography to afford the title product as a white solid. (MS: [M+1]+ 522).

Full text: Click here
Patent 2024
Anabolism brine Chromatography Gel Chromatography I 653 imidazole pyrrolidine Silica Gel Silicon Dioxide Sodium Chloride

Example 16

[Figure (not displayed)]

A mixture of 6-(2-chloro-2′-methyl-3′-((2-methylpyrido[3,2-d]pyrimidin-4-yl)amino)-[1,1′-biphenyl]-3-yl)-2-methoxynicotinaldehyde (50 mg, 0.10 mmol), 2-aminoacetamide hydrogen chloride (30 mg, 0.27 mmol), Et3N (0.070 mL, 0.50 mmol) and AcOH (0.080 mL, 1.37 mmol) in DCM (2 mL) was stirred for 1.5 h at room temperature. To the mixture was added NaBH(OAc)3 (80 mg, 0.36 mmol). After stirring for an additional 1.5 h, the reaction was quenched with sat. NaHCO3 and extracted with DCM. The organic layer was separated, dried over Na2SO4, concentrated in vacuo and purified by silica gel chromatography to afford 2-(((6-(2-chloro-2′-methyl-3′-((2-methylpyrido[3,2-d]pyrimidin-4-yl)amino)-[1,1′-biphenyl]-3-yl)-2-methoxypyridin-3-yl)methyl)amino)acetamide. 1H NMR (400 MHz, CDCl3) δ 9.23 (s, 1H), 8.72 (dd, J=4.0, 1.2 Hz, 1H), 8.58 (d, J=8.4 Hz, 1H), 8.09 (dd, J=8.4, 1.6 Hz, 1H), 7.70-7.65 (m, 1H), 7.63 (dd, J=8.0, 1.6 Hz, 1H), 7.55 (d, J=7.6 Hz, 1H), 7.44-7.37 (m, 2H), 7.30 (dd, J=5.6, 2.0 Hz, 1H), 7.32-7.24 (m, 2H), 7.06 (d, J=7.2 Hz, 1H), 4.03 (s, 3H), 3.79 (s, 2H), 3.31 (s, 2H), 2.36 (s, br, 2H), 2.26 (s, 3H), 2.04 (s, 3H). MS: (ES) m/z calculated C30H29ClN7O2 [M+H]+ 554.2, found 554.1.

Full text: Click here
Patent 2024
1H NMR acetamide Bicarbonate, Sodium Chromatography diphenyl Gel Chromatography glycine amide Hydrochloric acid Silica Gel Silicon Dioxide

Example 94

[Figure (not displayed)]

To a solution of tert-butyl 3-(1′-carbamoylspiro[chromane-2,4′-piperidine]-6-yl)indole-1-carboxylate (0.072 g, 0.16 mmol) in DCM (2 mL) was added hydrogen chloride (4 mol/L) in 1,4-dioxane (2.0 mL, 8.0 mmol) dropwise. The reaction was stirred overnight, concentrated, then dried under vacuum. Silica gel chromatography on the ISCO (0 to 100% (25% 20:1:1 EtOH:NH4OH:H2O—75% EtOAc)—100 to 0% hexanes; 40 g column) yielded the desired compound as an off-white solid (0.0330 g, 59%). Analysis: LCMS m/z=362 (M+1); 1H NMR (400 MHz, DMSO-d6) δ: 11.20 (d, J=1.5 Hz, 1H), 7.81 (d, J=8.0 Hz, 1H), 7.52 (d, J=2.5 Hz, 1H), 7.41 (d, J=8.0 Hz, 1H), 7.39-7.34 (m, 2H), 7.16-7.09 (m, 1H), 7.09-7.02 (m, 1H), 6.88-6.81 (m, 1H), 5.95 (s, 2H), 3.69 (d, J=13.3 Hz, 2H), 3.20-3.09 (m, 2H), 2.81 (t, J=6.7 Hz, 2H), 1.82 (t, J=6.8 Hz, 2H), 1.69 (d, J=13.6 Hz, 2H), 1.59-1.47 (m, 2H).

Full text: Click here
Patent 2024
1H NMR Chromatography dioxane Ethanol Gel Chromatography Hexanes Hydrochloric acid indole Lincomycin piperidine Silica Gel Silicon Dioxide Sulfoxide, Dimethyl TERT protein, human Vacuum

Top products related to «Gel Chromatography»

Sourced in United States, United Kingdom, Sweden, Germany, France, Japan, Switzerland
Superdex 200 is a size-exclusion chromatography medium used for the separation and purification of proteins, peptides, and other biomolecules. It is composed of highly cross-linked agarose beads that allow for efficient separation based on molecular size. The Superdex 200 matrix provides a wide fractionation range and high resolution, making it a versatile tool for a variety of applications in biotechnology and life science research.
Sourced in United States, Sweden, United Kingdom, Germany, Japan, China, Italy
The Superdex 200 10/300 GL column is a size exclusion chromatography column designed for the purification and analysis of a wide range of biomolecules, including proteins, peptides, and other macromolecules. It features a prepacked, ready-to-use format with a bed volume of 24 mL and a separation range of 10,000 to 600,000 Da.
Sourced in United States, Sweden, United Kingdom, Germany, Japan
The Superdex 200 column is a size-exclusion chromatography media used for the separation and purification of proteins, peptides, and other biomolecules. It is designed to provide efficient separation and high resolution across a wide range of molecular weights. The column is suitable for a variety of applications, including protein analysis, desalting, and buffer exchange.
Sourced in United States
The Gel Filtration Standard is a laboratory instrument used for the separation and purification of molecules based on their size and shape. It operates on the principle of size exclusion chromatography, allowing the separation of compounds within a sample mixture.
Sourced in United States, Sweden, United Kingdom, Germany, France, Italy
Superdex 75 is a size-exclusion chromatography matrix designed for the separation and purification of proteins, peptides, and other biomolecules. It is composed of cross-linked agarose and dextran beads, providing a porous structure that allows for the separation of molecules based on their size and molecular weight.
Sourced in United States, Sweden, United Kingdom, Germany, China, Japan
The Superdex 200 Increase 10/300 GL column is a size exclusion chromatography column designed for the separation and purification of proteins, peptides, and other biomolecules. The column has a bed volume of 24 mL and is compatible with a wide range of sample sizes and flow rates.
Sourced in United States, Sweden, United Kingdom, Germany, Japan
The Superdex 200 10/300 GL is a pre-packed size exclusion chromatography column designed for high-resolution fractionation of proteins, peptides, and other biomolecules. The column is made of a durable borosilicate glass column and filled with a Superdex 200 resin. It has a bed volume of 24 ml and a recommended flow rate range of 0.2-0.8 ml/min. The Superdex 200 resin provides effective separation of molecules with molecular weights between 10,000 and 600,000 daltons.
Sourced in United States, Sweden, United Kingdom
The Superdex 75 column is a size-exclusion chromatography column designed for the separation and purification of proteins, peptides, and other biomolecules. It is composed of a cross-linked agarose and dextran matrix that allows for the efficient separation of molecules based on their size and molecular weight.
Sourced in United States, United Kingdom, Germany, Sweden, Japan, Canada, Belgium
The PD-10 column is a size-exclusion chromatography column designed for desalting and buffer exchange of protein samples. It is commonly used to separate low molecular weight substances from high molecular weight compounds, such as proteins, in a rapid and efficient manner.
Sourced in Germany, United States, United Kingdom, Canada, Netherlands, India
Ni-NTA resin is a nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography medium used for the purification of recombinant proteins containing a histidine-tag (His-tag) sequence. The resin binds to the His-tag and allows the target protein to be isolated from complex mixtures.

More about "Gel Chromatography"

Gel chromatography, also known as size exclusion chromatography (SEC) or gel filtration, is a powerful analytical technique used to separate and purify biomolecules based on their size and shape.
This process involves passing a sample through a porous gel matrix, where larger molecules elute faster than smaller ones.
Researchers can leverage PubCompare.ai to optimize their gel chromatography workflows by accessing the most reliable and reproducible protocols from the literature, preprints, and patents.
The AI-driven comparisons provided by PubCompare.ai help identify the best methods, enhancing research accuracy and productivity.
By streamlining gel chromatography experiments with the power of PubCompare.ai, scientists can focus on generating high-quaility, reproducible results and advancing their field of study.
Some common gel filtration columns used in biomolecule separation and purification include Superdex 200, Superdex 200 10/300 GL, Superdex 75, and PD-10.
These columns are often used in combination with Gel Filtration Standards to calibrate the system and determine the molecular weights of the separated analytes.
The Superdex 200 Increase 10/300 GL column offers improved resolution and higher flow rates compared to the standard Superdex 200 10/300 GL.
Ni-NTA resin is another commonly used tool in protein purification, as it allows for the capture and purification of histidine-tagged proteins through affinity chromatography.
By integrating the power of PubCompare.ai into their workflow, researchers can optimize their use of these various chromatographic techniques and enhance the efficiency and reliability of their biomolecule separation and purification efforts.