The largest database of trusted experimental protocols
> Procedures > Laboratory Procedure > Microscopy

Microscopy

Microscopy is a critical technique for visualizing and analyzing microscopic structures and processes across a wide range of scientific fields.
This powerful tool enables researchers to observe the minute details of cells, tissues, molecules, and other small-scale phenomena with unparalleled clarity and precision.
From biomedical research to materials science, microscopy plays a vital role in advancing our understanding of the natural world.
With continual innovations in imaging technologies and analytical methods, microscopy continues to push the boundaries of what is observable, empowering scientists to make groundbreaking discoveries and develop innovative solutions to complex problems.
Wheher you're studying the ultrastructure of a virus, tracking the dynamics of live cells, or characterizing the composition of nanomaterials, microscopy remains an indispenable compontent of modern scientific inquirey.

Most cited protocols related to «Microscopy»

All experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of Allen Institute for Brain Science in accordance with NIH guidelines. All characterization was done using adult mice around ages P56 or older. The mice that were characterized were in a mixed genetic background, containing 50–75% C57BL/6 background and the remainders of 129 or other backgrounds from the various Cre lines. For systematic characterization of fluorescent proteins either by their native fluorescence or IHC, perfused brains were cryosectioned using a tape transfer technique, sections were then DAPI stained directly or following antibody staining, and images were captured using automated fluorescent microscopy. Microtome sections of 100-μm thickness from perfused brains were used for confocal imaging of fluorescently labeled cells. For systematic characterization of gene expression by colorimetric ISH or DFISH, the Allen Institute established pipelines for tissue processing, probe hybridization, image capture and data processing were utilized. Informatics signal identification, mapping, and quantification used the Allen Mouse Brain Atlas spatial mapping platform24 (link), 29 . In this pipeline, image series are preprocessed (white-balanced and cropped), then registered to a three-dimensional informatics reference atlas of the C57BL/6J mouse brain28 . This registration enables data to be displayed in 2D sections or reconstructed 3D volumes.
Publication 2009
Acid Hybridizations, Nucleic Adult Brain Cells Colorimetry DAPI Fluorescence Gene Expression Genetic Background Immunoglobulins Institutional Animal Care and Use Committees Mice, Inbred C57BL Mice, Laboratory Microscopy Microtomy Proteins Tissues
The portions removed from the samples were analyzed under an Axio Imager Z1 microscope (Zeiss, Oberkochen, Germany). Immunostaining was evaluated semiquantitatively by randomly selecting 30 fields at high magnification, including 10 in the meninges, 10 in the perivascular space, and 10 in the parenchyma in positive or negative cases. Each field was subdivided into 10 × 10 areas delimited by a grid, comprising an area of 0.0625 mm2. We highlight that for the meninges, three positive cases did not have this structure. For semiquantitative analysis, scores were attributed, taking into consideration the intensity of immunostaining in the tissue environment. The range adopted for each analysis is shown in Supplementary Table S2.
Full text: Click here
Publication 2018
Brain Perivascular Spaces Meninges Microscopy Tissues
BSC1 (monkey kidney epithelial) cells stably expressing rat brain clathrin light chain-EGFP (kindly provided by T. Kirchhausen, Harvard Medical School, Boston, MA) were cultured and prepared as specified in Supplementary Note 13 online. For live cell imaging, BSC1 cells were plated on glass coverslips, and through-the-objective TIR-FM was performed on a Nikon TE2000U inverted microscope using a 100X/1.45NA oil-immersion objective. Images were captured at 0.5 Hz with 200ms exposure time using a Hamamatsu Orca II-ERG.
Publication 2008
Brain Cells Clathrin Light Chains Epithelial Cells Kidney Microscopy Monkeys Orcinus orca Submersion
C. crescentus, B. subtilis, A. biprosthecum, Rhodomicrobium sp, and P. hirshii were grown in PYE14 (link) at 30°C. A. tumefaciens, S. venezuelae, L. lactis, were grown in LB15 (link) at 30°C and E. coli was grown in LB15 (link) at 37°C. M. xanthus were grown at 32°C in CYE16 (link). S. pneumonia were grown at 37°C in THY17 . Rhodopseudomonas palustris CGA009 was grown anaerobically in defined mineral medium (PM)18 supplemented with 10 mM succinate and incubated at 30°C with constant illumination from a 60 W incandescent light bulb.
Phase and fluorescence time-lapse imaging was performed on a Nikon Ti-E inverted microscope, equipped with a Plan Apo 60×, 1.40 NA, Oil, Ph3 DM objective and 1.5× magnifier. Images were acquired every 5 min, and fluorescent proteins were illuminated with a Lumencor Spectra × light engine equipped with excitation filters 470/24 (GFP), 510/25 (YFP) or 575/25 (mCherry), Chroma emission filters 510/40 (GFP), 545/30 (YFP), 530/60 (mCherry) and either a quad polychroic DAPI/FITC/Cy3/Cy5 or triple polychroic CFP/YFP/mCherry cube for Lumencor SpectraX. Images were acquired using an Andor iXon3 DU885 EM CCD camera driven by NIS Elements Advanced Research software (Nikon, Melville, NY)
Cultures from strain YB4667 CB15::pvan-ftsZ-yfp were grown in PYE medium at 30°C and induced for 2 hours with 0.5 mM vanillic acid to express FtsZ-YFP. Exponentially growing cells from this culture were spotted onto a 0.8 mm thick 1% agarose pad made with PYE medium containing 0.5 mM vanillic acid and timelapse images were acquired every 5 minutes from 16 different slide positions for 54 time points. For cell division inhibition, 30 µg/ml of cephalexin was added to the agarose pad during the imaging period.
For precision assessment of MicrobeJ, Molecular Probes FluoSpheres carboxylate-modified microspheres (F8823), 1± 0.0480 µm lot #1761288 were spotted onto a 1% agarose pad made with deionized water and images were acquired for 30 ms using the same microscope, camera and objective as cells.
Publication 2016
Apolipoproteins A Cell Culture Techniques Cells Cephalexin DAPI Division, Cell Escherichia coli Fluorescein-5-isothiocyanate Fluorescence Incandescence Light Medulla Oblongata Microscopy Microspheres Minerals Molecular Probes Pneumonia Proteins Psychological Inhibition Rhodomicrobium Rhodopseudomonas palustris Sepharose Strains Succinate Vanillic Acid

Protocol full text hidden due to copyright restrictions

Open the protocol to access the free full text link

Publication 2011
Alleles Biological Assay Brain Genetic Background Internal Ribosome Entry Sites Intersectional Framework Mice, Laboratory Microscopy Microscopy, Confocal Recombination, Genetic

Most recents protocols related to «Microscopy»

Example 3

To evaluate the crystal morphology of the example iPP/CNF composites, a ME520 Series polarized light microscope (PLM) (AmScope, USA) was utilized. Sections that were 3 μm-thick were obtained from cross sections of injection molded specimens using a Sorvall MT2-B Ultramicrotome. Each section was placed between a glass slide and a cover slip then transferred to a hot plate (Thermo Scientific) at 200° C. for 2 min before it was cooled at room temperature.

FIG. 5 shows the crystal morphology of iPP and iPP/CNF composites obtained by a polarized light microscope. Because no cold-crystallization peaks were observed in the DSC scans for all specimens, the crystal morphology caused by the micrograph preparation was negligible. As the CNF content was increased in the iPP matrix, the nucleation density increased, but spherulite size decreased. Typical crystal diameters of iPP, iPP/MA, and the iPP/CNF3%, iPP/CNF10%, iPP/CNF30% and iPP/MA/CNF10% composites were about 33 μm, 27 μm, 21 μm, 12 μm, 8 μm, and 10 μm, respectively. These results suggested that CNF restricted the folding motion of polymer chains during crystallization and made the re-entry of polymer chains into the crystal face more difficult, resulting in smaller crystals. Hence, steric hindrance attributed to a large concentration of CNF resulted in the high values of ΔE for iPP, as shown in Table 5. Meanwhile, MAPP allowed the PP to mix more effectively with CNF. MAPP may also have facilitated transcrystallization, a process in which spherulites grow perpendicularly to a surface. Transcrystallization can improve the attachment of polymer segments to the crystal surface and reduce ΔE. However, the method used in this example to prepare sections for PLM observation involved fairly rapid cooling (˜80° C./min), which may have created thin transcrystalline layers. Thin crystal layers are not readily seen in PLM at high magnification because of their weak light intensity. A possible site of CNF transcrystallization was identified in the iPP/MA/CNF10% composite shown in FIG. 5. As a comparison, the morphology of the PP spherulites on the CNF surfaces in the PP/CNF3% composite is also shown and was almost identical to that of the iPP matrix. These results suggest that MAPP caused a transcrystalline layer formation. The PLM micrographs also confirmed kinetic results obtain in previous sections.

The overall crystallization rate may be dependent on nucleation rate and crystal growth rate. For iPP/CNF3%, the presence of CNF increased the nucleation density without affecting the crystal growth. Therefore, iPP/CNF3% had an accelerated crystallization rate. For iPP/CNF10%, the nucleation density pf iPP was increased by the CNF. At the same time, crystal growth was impeded by CNF. Overall, CNF reduced iPP's crystallization rate when present at 10 wt. %. After MAPP was introduced to iPP/CNF10%, the nucleation density of the composite furthered increased because of a coupling effect. Moreover, the formation of transcrystalline layers facilitated crystal growth.

Full text: Click here
Patent 2024
Cold Temperature Crystal Growth Crystallization Debility Face Kinetics Light Microscopy Microscopy, Polarization Polymers Radionuclide Imaging Ultramicrotomy Vision

Example 1

a. Materials and Methods

i. Vector Construction

1. Virus-Like Particle

As most broadly neutralizing HPV antibodies are derived from the highly conserved N-terminal region of L2, amino acids 14-122 of HPV16 L2 were used to create HBc VLPs. L2 with flanking linker regions was inserted into the tip of the a-helical spike of an HBc gene copy which was fused to another copy of HBc lacking the L2 insert. This arrangement allows the formation of HBc dimers that contain only a single copy of L2, increasing VLP stability (Peyret et al. 2015). This heterodimer is referred to as HBche-L2. A dicot plant-optimized HPV16 L2 coding sequence was designed based upon the sequence of GenBank Accession No. CAC51368.1 and synthesized in vitro using synthetic oligonucleotides by the method described (Stemmer et al., 1995). The plant-optimized L2 nucleotide sequence encoding residues 1-473 is posted at GenBank Accession No. KC330735. PCR end-tailoring was used to insert Xbal and SpeI sites flanking the L2 aa 14-122 using primers L2-14-Xba-F (SEQ ID NO. 1: CGTCTAGAGTCCGCAACCCAACTTTACAAG) and L2-122-Spe-R (SEQ ID NO. 2: G GGACTAGTTGGGGCACCAGCATC). The SpeI site was fused to a sequence encoding a 6His tag, and the resulting fusion was cloned into a geminiviral replicon vector (Diamos, 2016) to produce pBYe3R2K2Mc-L2(14-122)6H.

The HBche heterodimer VLP system was adapted from Peyret et al (2015). Using the plant optimized HBc gene (Huang et al., 2009), inventors constructed a DNA sequence encoding a dimer comprising HBc aa 1-149, a linker (G2S)5G (SEQ ID NO. 39), HBc aa 1-77, a linker GT(G4S)2 (SEQ ID NO. 40), HPV-16 L2 aa 14-122, a linker (GGS)2GSSGGSGG (SEQ ID NO. 41), and HBc aa 78-176. The dimer sequence was generated using multiple PCR steps including overlap extensions and insertion of BamHI and SpeI restriction sites flanking the L2 aa 14-122, using primers L2-14-Bam-F (SEQ ID NO. 3: CAGGATCCGCAACC CAACTTTACAAGAC) and L2-122-Spe-R (SEQ ID NO. 2). The HBche-L2 coding sequence was inserted into a geminiviral replicon binary vector pBYR2eK2M (FIG. 3), which includes the following elements: CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), CaMV 35S 3′ terminator (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

2. Recombinant Immune Complex

The recombinant immune complex (RIC) vector was adapted from Kim et al., (2015). The HPV-16 L2 (aa 14-122) segment was inserted into the BamHI and SpeI sites of the gene encoding humanized mAb 6D8 heavy chain, resulting in 6D8 epitope-tagged L2. The heavy chain fusion was inserted into an expression cassette linked to a 6D8 kappa chain expression cassette, all inserted into a geminiviral replicon binary vector (FIG. 3, RIC vector). Both cassettes contain CaMV 35S promoter with duplicated enhancer (Huang et al., 2009), 5′ UTR of N. benthamiana psaK2 gene (Diamos et al., 2016), intron-containing 3′ UTR and terminator of tobacco extensin (Rosenthal et al, 2018), and Rb7 matrix attachment region (Diamos et al., 2016).

ii. Agroinfiltration of Nicotiana benthamiana Leaves

Binary vectors were separately introduced into Agrobacterium tumefaciens EHA105 by electroporation. The resulting strains were verified by restriction digestion or PCR, grown overnight at 30° C., and used to infiltrate leaves of 5- to 6-week-old N. benthamiana maintained at 23-25° C. Briefly, the bacteria were pelleted by centrifugation for 5 minutes at 5,000 g and then resuspended in infiltration buffer (10 mM 2-(N-morpholino)ethanesulfonic acid (MES), pH 5.5 and 10 mM MgSO4) to OD600=0.2, unless otherwise described. The resulting bacterial suspensions were injected by using a syringe without needle into leaves through a small puncture (Huang et al. 2004). Plant tissue was harvested after 5 DPI, or as stated for each experiment. Leaves producing GFP were photographed under UV illumination generated by a B-100AP lamp (UVP, Upland, CA).

iii. Protein Extraction

Total protein extract was obtained by homogenizing agroinfiltrated leaf samples with 1:5 (w:v) ice cold extraction buffer (25 mM sodium phosphate, pH 7.4, 100 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, 10 mg/mL sodium ascorbate, 0.3 mg/mL PMSF) using a Bullet Blender machine (Next Advance, Averill Park, NY) following the manufacturer's instruction. To enhance solubility, homogenized tissue was rotated at room temperature or 4° C. for 30 minutes. The crude plant extract was clarified by centrifugation at 13,000 g for 10 minutes at 4° C. Necrotic leaf tissue has reduced water weight, which can lead to inaccurate measurements based on leaf mass. Therefore, extracts were normalized based on total protein content by Bradford protein assay kit (Bio-Rad) with bovine serum albumin as standard.

iv. SDS-PAGE and Western Blot

Clarified plant protein extract was mixed with sample buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 0.02% bromophenol blue) and separated on 4-15% polyacrylamide gels (Bio-Rad). For reducing conditions, 0.5M DTT was added, and the samples were boiled for 10 minutes prior to loading. Polyacrylamide gels were either transferred to a PVDF membrane or stained with Coomassie stain (Bio-Rad) following the manufacturer's instructions. For L2 detection, the protein transferred membranes were blocked with 5% dry milk in PBST (PBS with 0.05% tween-20) overnight at 4° C. and probed with polyclonal rabbit anti-L2 diluted 1:5000 in 1% PBSTM, followed by goat anti-rabbit horseradish peroxidase conjugate (Sigma). Bound antibody was detected with ECL reagent (Amersham).

v. Immunization of Mice and Sample Collection

All animals were handled in accordance to the Animal Welfare Act and Arizona State University IACUC. Female BALB/C mice, 6-8 weeks old, were immunized subcutaneously with purified plant-expressed L2 (14-122), HBche-L2 VLP, L2 RIC, or PBS mixed 1:1 with Imject® Alum (Thermo Scientific, Rockford, IL). In all treatment groups, the total weight of antigen was set to deliver an equivalent 5 μg of L2. Doses were given on days 0, 21, and 42. Serum collection was done as described (Santi et al. 2008) by submandibular bleed on days 0, 21, 42, and 63.

vi. Antibody Measurements

Mouse antibody titers were measured by ELISA. Bacterially-expressed L2 (amino acids 11-128) was bound to 96-well high-binding polystyrene plates (Corning), and the plates were blocked with 5% nonfat dry milk in PBST. After washing the wells with PBST (PBS with 0.05% Tween 20), the diluted mouse sera were added and incubated. Mouse antibodies were detected by incubation with polyclonal goat anti-mouse IgG-horseradish peroxidase conjugate (Sigma). The plate was developed with TMB substrate (Pierce) and the absorbance was read at 450 nm. Endpoint titers were taken as the reciprocal of the lowest dilution which produced an OD450 reading twice the background. IgG1 and IgG2a antibodies were measured with goat-anti mouse IgG1 or IgG2a horseradish peroxidase conjugate.

vii. Electron Microscopy

Purified samples of HBche or HBche-L2 were initially incubated on 75/300 mesh grids coated with formvar. Following incubation, samples were briefly washed twice with deionized water then negatively stained with 2% aqueous uranyl acetate. Transmission electron microscopy was performed with a Phillips CM-12 microscope, and images were acquired with a Gatan model 791 CCD camera.

viii. Statistical Analysis

The significance of vaccine treatments and virus neutralization was measured by non-parametric Mann-Whitney test using GraphPad prism software. Two stars (**) indicates p values <0.05. Three stars (***) indicates p values <0.001.

b. Design and Expression of HBc VLPs and RIC Displaying HPV16 L2

BeYDV plant expression vectors (FIG. 3) expressing either the target VLP HBche-L2, or L2 and HBche alone as controls, were agroinfiltrated into the leaves of N. benthamiana and analyzed for VLP production. After 4-5 days post infiltration (DPI), leaves displayed only minor signs of tissue necrosis, indicating that the VLP was well-tolerated by the plants (FIG. 4A). Leaf extracts analyzed by reducing SDS-PAGE showed an abundant band near the predicted size of 51 kDa for HBche-L2, just above the large subunit of rubisco (RbcL). HBche was detected around the predicted size of 38 kDa (FIG. 4B). Western blot probed with anti-L2 polyclonal serum detected a band for HBche-L2 at ˜51 kDa (FIG. 4B). These results indicate that this plant system is capable of producing high levels of L2-containing HBc VLP.

To express L2-containing MC, amino acids 14-122 of HPV16 L2 were fused with linker to the C-terminus of the 6D8 antibody heavy chain and tagged with the 6D8 epitope (Kim et al. 2015). A BeYDV vector (FIG. 3) expressing both the L2-fused 6D8 heavy chain and the light chain was agroinfiltrated into leaves of N. benthamiana and analyzed for RIC production. To create more homogenous human-type glycosylation, which has been shown to improve antibody Fc receptor binding in vivo, transgenic plants silenced for xylosyltransferase and fucosyltransferase were employed (Castilho and Steinkellner 2012). By western blot, high molecular weight bands >150 kDa suggestive of RIC formation were observed (FIG. 4C). Expression of soluble L2 RIC was lower than HBche-L2 due to relatively poor solubility of the RIC (FIG. 4C).

After rigorous genetic optimization, the N. benthamiana system is capable of producing very high levels of recombinant protein, up to 30-50% of the total soluble plant protein, in 4-5 days (Diamos et al. 2016). Using this system, we produced and purified milligram quantities of fully assembled and potently immunogenic HBc VLPs displaying HPV L2 through a simple one-step purification process (FIGS. 4A-4C and 6).

c. Purification and Characterization of HBche-L2 and L2 RIC

To assess the assembly of HBc-L2 VLP, clarified plant extracts containing either HBche-L2 or HBche were analyzed by sucrose gradient sedimentation. HBche-L2 sedimented largely with HBche, which is known to form VLP, though a small increase in density was observed with HBche-L2, perhaps due to the incorporation of L2 into the virus particle (FIG. 5A). To demonstrate particle formation, sucrose fractions were examined by electron microscopy. Both HBche and HBche-L2 formed ˜30 nm particles, although the appearance of HBche-L2 VLP suggested slightly larger, fuller particles (FIGS. 5C and 5D). As most plant proteins do not sediment with VLP, pooling peak sucrose fractions resulted in >95% pure HBche-L2 (FIG. 5B), yielding sufficient antigen (>3 mg) for vaccination from a single plant leaf.

L2 RIC was purified from plant tissue by protein G affinity chromatography. By SDS-PAGE, an appropriately sized band was visible >150 kDa that was highly pure (FIG. 5B). Western blot confirmed the presence of L2 in this band, indicating proper RIC formation (FIG. 5B). L2 RIC bound to human complement C1q receptor with substantially higher affinity compared to free human IgG standard, suggesting proper immune complex formation (FIG. 5E).

d. Mouse Immunization with HBche-L2 and L2 RIC

Groups of Balb/c mice (n=8) were immunized, using alum as adjuvant, with three doses each of 5 μg L2 delivered as either L2 alone, HBche-L2 VLP, L2 RIC, or a combination of half VLP and half RIC. VLP and RIC, alone or combined, greatly enhanced antibody titers compared to L2 alone by more than an order of magnitude at all time points tested (FIG. 6). After one or two doses, the combined VLP/RIC treatment group outperformed both the VLP or RIC groups, reaching mean endpoint titers of >200,000, which represent a 700-fold increase over immunization with L2 alone (FIG. 6). After the third dose, both the VLP and combined VLP/RIC groups reached endpoint titers >1,300,000, a 2-fold increase over the RIC alone group. To determine the antibody subtypes produced by each treatment group, sera were assayed for L2-binding IgG1 and IgG2a. All four groups produced predominately IgG1 (FIG. 7, note dilutions). However, RIC and especially VLP-containing groups had an elevated ratio of IgG2a:IgG1 (>3-fold) compared to L2 alone (FIG. 7).

In vitro neutralization of HPV16 pseudovirions showed that the VLP and RIC groups greatly enhanced neutralization compared to L2 alone (FIG. 5, p<0.001). Additionally, VLP and RIC combined further enhanced neutralization activity ($5-fold, p<0.05) compared to either antigen alone, supporting the strong synergistic effect of delivering L2 by both platforms simultaneously.

In this study, by displaying amino acids 11-128 on the surface of plant-produced HBc VLPs, L2 antibody titers as high as those seen with L1 vaccines were generated (FIG. 6). Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the other groups had much more homogenous antibody responses, especially the VLP-containing groups, which had no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2. Moreover, significant synergy of VLP and RIC systems was observed when the systems were delivered together, after one or two doses (FIG. 6). Since equivalent amounts of L2 were delivered with each dose, the enhanced antibody titer did not result from higher L2 doses. Rather, these data suggest that higher L2-specific antibody production may be due to augmented stimulation of L2-specific B cells by T-helper cells that were primed by RIC-induced antigen presenting cells. Although treatment with VLP and RIC alone reached similar endpoint titers as the combined VLP/RIC group after 3 doses, virus neutralization was substantially higher (>5-fold) in the combined group (FIG. 8). Together, these data indicate unique synergy exists when VLP and RIC are delivered together. Inventors have observed similarly significant synergistic enhancement of immunogenicity for a variety of other antigens.

Mice immunized with L2 alone had highly variable antibody titers, with titers spanning two orders of magnitude. By contrast, the VLP and VLP/RIC groups had much more homogenous antibody responses, with no animals below an endpoint titer of 1:1,000,000 (FIG. 6). These results underscore the potential of HBc VLP and RIC to provide consistently potent immune responses against L2.

Fc gamma receptors are present on immune cells and strongly impact antibody effector functions such as antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity (Jefferis 2009). In mice, these interactions are controlled in part by IgG subtypes. IgG1 is associated with a Th2 response and has limited effector functions. By contrast, IgG2a is associated with a Th1 response and more strongly binds complement components (Neuberger and Raj ewsky 1981) and Fc receptors (Radaev 2002), enhancing effector functions and opsonophagocytosis by macrophages (Takai et al. 1994). Immunization with L2 alone was found to produce low levels of IgG2a, however immunization with RIC and VLP produced significant increases in IgG2a titers. VLP-containing groups in particular showed a 3-fold increase in the ratio of IgG2a to IgG1 antibodies (FIG. 7). Importantly, production of IgG2a is associated with successful clearance of a plethora of viral pathogens (Coutelier et al. 1988; Gerhard et al. 1997; Wilson et al. 2000; Markine-Goriaynoff and Coutelier 2002).

The glycosylation state of the Fc receptor also plays an important role in antibody function. Advances in glycoengineering have led to the development of transgenic plants with silenced fucosyl- and xylosyl-transferase genes capable of producing recombinant proteins with authentic human N-glycosylation (Strasser et al. 2008). Antibodies produced in this manner have more homogenous glycoforms, resulting in improved interaction with Fc gamma and complement receptors compared to the otherwise identical antibodies produced in mammalian cell culture systems (Zeitlin et al. 2011; Hiatt et al. 2014; Strasser et al. 2014; Marusic et al. 2017). As the known mechanisms by which RIC vaccines increase immunogenicity of an antigen depend in part on Fc and complement receptor binding, HPV L2 RIC were produced in transgenic plants with silenced fucosyl- and xylosyl-transferase. Consistent with these data, we found that L2 RIC strongly enhanced the immunogenicity of L2 (FIG. 6). However, yield suffered from insolubility of the RIC (FIG. 4C). We found that the 11-128 segment of L2 expresses very poorly on its own in plants and may be a contributing factor to poor L2 RIC yield. Importantly, we have produced very high yields of RIC with different antigen fusions. Thus, in some aspects, antibody fusion with a shorter segment of L2 could substantially improve the yield of L2 RIC.

e. Neutralization of HPV Pseudovirions

Neutralization of papilloma pseudoviruses (HPV 16, 18, and 58) with sera from mice immunized IP with HBc-L2 VLP and L2(11-128) showed neutralization of HPV 16 at titers of 400-1600 and 200-800, respectively (Table 1). More mice IP-immunized with HBc-L2 VLP had antisera that cross-neutralized HPV 18 and HPV 58 pseudoviruses, compared with mice immunized with L2(11-128). Anti-HBc-L2 VLP sera neutralized HPV 18 at titers of 400 and HPV 58 at titers ranging from 400-800 (Table 1), while anti-L2(11-128) sera neutralized HPV 18 at a titer of 200 and HPV 58 at a titer of 400 (Table 1). None of the sera from intranasal-immunized mice demonstrated neutralizing activity, consistent with lower anti-L2 titers for intranasal than for intraperitoneal immunized mice.

TABLE 1
L2-specific serum IgG and pseudovirus neutralization
titers from IP immunized mice
Neutralization of Pseudoviruses
ImmunogenSerum IgGHPV 16HPV 18HPV 58
HBc-L2>50,000 400
~70,0001600400400
>80,0001600400800
L2 (11-128)~8000 200
~12,000 400
~50,000 800200400

Full text: Click here
Patent 2024
3' Untranslated Regions 5' Untranslated Regions AA 149 Agrobacterium tumefaciens aluminum potassium sulfate aluminum sulfate Amino Acids Animals Animals, Transgenic Antibodies Antibody Formation Antigen-Presenting Cells Antigens B-Lymphocytes Bacteria Bromphenol Blue Buffers Cell Culture Techniques Cells Centrifugation Chromatography, Affinity Cloning Vectors Cold Temperature Combined Modality Therapy complement 1q receptor Complement Receptor Complex, Immune Complex Extracts Cytotoxicities, Antibody-Dependent Cell Cytotoxin Digestion DNA, A-Form DNA Sequence Edetic Acid Electron Microscopy Electroporation Enzyme-Linked Immunosorbent Assay Epitopes ethane sulfonate Fc Receptor Females Formvar Fucosyltransferase G-substrate Gamma Rays Genes Genes, vif Glycerin Goat Helix (Snails) Helper-Inducer T-Lymphocyte Homo sapiens Homozygote Horseradish Peroxidase Human papillomavirus 16 Human papillomavirus 18 Human Papilloma Virus Vaccine IGG-horseradish peroxidase IgG1 IgG2A Immune Sera Immunoglobulin Heavy Chains Immunoglobulins Immunologic Factors Institutional Animal Care and Use Committees Introns Inventors L2 protein, Human papillomavirus type 16 Light Macrophage Mammals Matrix Attachment Regions Mice, Inbred BALB C Microscopy Milk, Cow's Morpholinos Mus Necrosis Needles Nicotiana Oligonucleotide Primers Oligonucleotides Open Reading Frames Opsonophagocytosis Papilloma Pathogenicity Plant Development Plant Extracts Plant Leaves Plant Proteins Plants Plants, Transgenic polyacrylamide gels Polystyrenes polyvinylidene fluoride prisma Protein Glycosylation Proteins Punctures Rabbits Receptors, IgG Recombinant Proteins Replicon Reproduction Response, Immune Ribulose-Bisphosphate Carboxylase Large Subunit Satellite Viruses SDS-PAGE Serum Serum Albumin, Bovine Sodium Ascorbate Sodium Chloride sodium phosphate Specimen Collection Stars, Celestial Strains Sucrose Sulfate, Magnesium Syringes System, Immune Technique, Dilution Tissue, Membrane Tissues Transferase Transmission Electron Microscopy Triton X-100 Tromethamine Tween 20 Ultraviolet Rays uranyl acetate Vaccination Vaccines Vaccines, Recombinant Virion Viroids Virus Vision Western Blotting xylosyltransferase
Not available on PMC !

Example 2

About 5 μM fluorescein (F1300, Invitrogen, Carlsbad, CA) solution in ethanol was prepared. For imaging, the solution was transferred into a sealed 10 mm glass bottom dish (P35G-1.5-10-c, MatTek Corporation, Ashland, MA, USA) and mounted in an inverted confocal microscope. Imaging was performed on a Zeiss LSM780 inverted confocal microscope with QUASAR detector (Carl Zeiss, Jena, Germany). A typical dataset consists of 32 images, each of dimensions 512×512 pixels, corresponding to different wavelengths from about 410.5 nm to about 694.9 nm with about 8.9 nm bandwidth. The measurement is repeated 10 times using C-Apochromat 40×/1.20 W Korr Zeiss objective at any given imaging parameter. Fluorescein was imaged with about 488 nm laser at different acquisition parameters (Table 1).

For in vivo imaging 5-6 zebrafish embryos at appropriate stage were placed into about 1% agarose (Catalog No. 16500-100, Invitrogen™) moulds created in an imaging dish with #1.5 coverglass bottom, (Catalog No. D5040P, WillCo Wells) using a custom designed negative plastic mould [29]. Embryos were immobilized by adding about 2 ml of about 1% UltraPure™ Low Melting Point Agarose (Catalog No. 16520-050, Invitrogen™) solution prepared in about 30% Danieau (about 17.4 mM NaCl, about 210 μM KCl, about 120 μM MgSO4.7H2O, about 180 μM Ca(NO3)2, about 1.5 mM HEPES buffer in water, pH about 7.6) with about 0.003% PTU and about 0.01% tricaine. This solution was then added on top of the embryos already placed in the mold. Following solidification of agarose at room temperature (1-2 minutes), the imaging dish was filled with about 30% Danieau solution and about 0.01% Tricaine, at about 28.5° C. Subsequent imaging was performed on an inverted confocal microscope by positioning the petridish appropriately on the microscope stage. Samples were obtained by crossing Gt(desm-citrine)ct122a/+ with Tg(kdrl:eGFP) fish for two color imaging. Samples with four fluorescent proteins result from same crossing followed by injection of about 100 pg per embryo of mRNA encoding H2B-cerulean and membrane-mCherry. Samples of Gt(desm-citrine)ct122a/+;Tg(kdrl:eGFP) were imaged with about 488 nm laser to excite both Citrine and eGFP and a narrow about 488 nm dichroic to separate excitation and fluorescence emission. Samples of Gt(desm-citrine)ct122a/+;Tg(kdrl:eGFP) with H2B-cerulean and membrane-mCherry labels were imaged with about 458 nm laser to excite Cerulean, eGFP and Citrine with a narrow about 488 nm dichroic, following an about 561 nm laser to excite mCherry with an about 458-561 nm dichroic.

For in vivo time-lapse imaging 5-6 zebrafish at appropriate stage were immobilized in an imaging dish with #1.5 coverglass bottom using about 0.5% Low Melting Point Agarose agarose (same as above) to allow for development and with about 0.003% PTU and about 0.01% tricaine. Subsequent imaging was performed on the same confocal-two photon inverted microscope at about 28.5° C. A solution of Egg Water was added every hour to the imaging dish to ensure proper hydration of the sample. Samples with five fluorescent proteins were obtained by crossing Tg(kdrl: eGFP) with Tg(ubiq:membrane-Cerulean-2a-H2B-tdTomato) zebrafish followed by injection of about 120 pg and about 30 pg per embryo of mRNA encoding Rab9-YFP and Rab11-mCherry, respectively. Volumetric data was acquired using about 950 nm to excite Cerulean, eGFP, YFP and (weakly) tdTomato with a 760+ bandpass filter, following an about 561 nm laser to excite mCherry and tdTomato with an about 458-561 nm dichroic.

Table 3 provides the detailed description of the imaging parameters used for all images presented in this work.

Full text: Click here
Patent 2024
Buffers Embryo Ethanol Fishes Fluorescein Fluorescence Fungus, Filamentous HEPES Hyperostosis, Diffuse Idiopathic Skeletal Microscopy Microscopy, Confocal Proteins RNA, Messenger Sepharose Sodium Chloride Sulfate, Magnesium tdTomato Tissue, Membrane tricaine Zebrafish

Example 1

119 Dicty strains were screened for their ability to feed on Dickeya (Dd) or Pectobacterium (Pcc) at 10° C. This assay was performed by inoculating Dd or Pcc on a low nutrient medium (SM2 agar) that supports both bacterial and Dicty growth. Dicty spores from individual strains were then inoculated on top of the bacterial growth and incubated at 10° C. to mimic potato storage temperatures. Dicty strains that successfully fed on Dd or Pcc created visible clearings in the lawn of bacterial growth and ultimately produced sporangia (fruiting bodies) that rose from the agar surface. An example of the phenotype that was considered successful clearing of bacteria is shown in FIG. 3A. From this initial screen, 36 Dicty strains that were capable of feeding on both Dd and Pcc at 10° C. were identified (FIG. 1B).

Of the 36 strains capable of feeding on both Dd and Pcc, 34 came from the Group 4 Dictyostelids (FIG. 1). This group includes D. discoideum, D. giganteum, D. minutum, D. mucoroides, D. purpureum, and D. sphaerocephalum (72). The results indicate that this group is particularly enriched in Dd and Pcc-feeding strains.

A further experiment was performed to identify Dicty species capable of feeding on biofilms of Dd and Pcc. Microporous polycarbonate membranes (MPMs) are widely reported to support biofilm formation of numerous Enterobacteriaceae species (2, 63, 70, 71). It was determined if Dd and Pcc formed biofilms on MPMs and determined if Dicty strains were capable of feeding on these biofilms. Membranes were placed on top of SM2 agar to provide Dd and Pcc with nutrients for growth. Bacteria were then inoculated on the surface of the MPMs and growth was monitored over the course of 1 week by washing bacteria off the membranes and performing dilution plating for colony counting. Growth of both bacterial strains plateaued around 4 dpi (FIG. 2).

From these results, it was determined that the best time to collect inoculated MPMs for biofilm analysis was at 2 dpi. Scanning electron microscopy (SEM) is commonly used to confirm biofilm formation by detecting extracellular polymeric substance (EPS) that forms the biofilm matrix (2). Samples of Dd and Pcc after 2 days of growth on MPMs in the presence and absence of Dicty are analyzed using SEM.

19 Dicty strains identified as active were tested for their ability to feed on Dd and Pcc growing on MPMs. These experiments were performed by establishing Dd and Pcc growth on MPMs overlaid on SM2 agar at 37° C. for 24 hr. Dicty spores were then applied to the center of bacterial growth in a 5 uL drop containing 1000 spores. Bacteria and Dicty were incubated at 10° C. for 2 weeks before remaining bacteria were washed off and colonies were counted. Representative images of Dicty growing on Dd and Pcc on MPMs are shown in FIG. 3A.

No Dicty strains produced a statistically significant reduction in Dd viability compared to the non-treated control. However, treating Dd lawns with Cohen 36, Cohen 9, WS-15, WS-20, and WS-69 consistently reduced the number of viable bacteria by approximately 100,000-fold compared to the non-treated control (FIG. 3B). Cohen 9 was the only Dicty strain that produced a statistically significant reduction in viability of Pcc compared to the non-treated control (FIG. 3C). Other Dicty strains capable of reducing the number of viable Pcc by at least 100,000-fold were Cohen 35, Cohen 36, WS-647, and WS-69 (FIG. 3C).

It was observed that Dicty strains Cohen 9, Cohen 36, and WS-69 were capable of feeding on both Dd and Pcc when these bacteria were cultured on SM2 agar and MPMs (FIGS. 1 and 3). These strains were also particularly effective feeders as all three reduced the number of viable Dd and Pcc on MPMs at 10° C. by 100,000-fold compared to the non-treated control (FIGS. 3B and 3C).

To determine if these strains could suppress soft rot development on seed potato tubers, tubers were tab-inoculated with Dd or Pcc and treated with spores from each Dicty strain. Seed potatoes were surface-sterilized and punctured using a sterile screw to a depth of 1.5 mm. Overnight cultures of Dd and Pcc were suspended in 10 mM potassium phosphate buffer, diluted to an OD600 of approximately 0.003, and administered as a 5 μL drop into the wound. Next, 5 of a Dicty spore suspension (100,000 spores) was added to the wound. Inoculated seed potatoes were placed in a plastic container with moist paper towels and were misted with water twice a day to maintain a high humidity. After 3 days at room temperature, seed potatoes were sliced in half and the area of macerated tissue was quantified using ImageJ.

All three strains reduced the severity of soft rot caused by Dd and Pcc (FIG. 4). Cohen 36 was the most effective strain on both Dd and Pcc: reducing the area of tissue maceration by 60% and 35%, respectively (FIG. 4B). Treating seed potatoes with WS-69 reduced the area of tissue maceration by 50% and 30% for Dd and Pcc, respectively (FIG. 4B). Finally, Cohen 9 was the least effective, but still able to reduce tissue maceration caused by Dd and Pcc by 25% and 20%, respectively (FIG. 4B).

FIG. 7 shows that three Dicty isolates control Dd and Pcc in seed tubers (at 25° C.). Two sets of data from different weeks were normalized to the Dickeya or Pectobacterium only bacterial control. The average area of macerated potato tissue measured in mm2 was set as “1” or “100%”. The average of all the other treatments including Dicty were divided by bacteria only control and multiplied by 100 to obtain a percentage. Each set contained 5 tubers per treatment.

Dicty should be capable of sporulating at temperatures as cold as 10° C. on a potato surface if they are applied as a one-time pre-planting or post-harvest treatment. Sporulation was assessed by inoculating small potato discs (5×6 mm) with 10 μL of Dd or Pcc suspensions at an OD600 of 3×10−5 and Dicty spores at a concentration of 1×107 spores/mL. Potato discs were kept in a covered 96-well plate for two weeks at 10° C. followed by visual inspection for son using a dissecting microscope. Representative images of a strain producing many sori (WS-517) and a strain producing few sori (WS-69) are shown in FIG. 5. Of the 11 strains evaluated, only Cohen 9 and WS-20 were unable to sporulate in the presence of both pathogens (Table 1).

TABLE 1
Assessment of Dicty sporulation at 10° C. on potato
in the presence of Dd or Pcc. A (✓) indicates sori
have been observed while a ( [Figure (not displayed)]  ) means they have not.
Dicty strainDdPcc
Cohen 9[Figure (not displayed)]
Cohen 36
WS-69
WS-517
WS-588
WS-606
WS-15
WS-20[Figure (not displayed)]
DC-7
DC-61
WS-116d

Example 2

This example describes the use of a high throughput screening assay to identify Dicty strains from Alaska (e.g., BAC10A, BAF6A, BAC3A, NW2, KB4A (ATCC® MYA-4262™) SO8B, SO3A, BAF9B, IC2A (ATCC® MYA-4259™), AK1A1 (ATCC® MYA-4272™) PBF4B (ATCC® MYA-4263), PBF8B, BSB1A, SO5B (ATCC® MYA-4249), PBF3C, PBF6B, NW2B, NW10B (ATCC® MYA-4271™), PBF9A, IC5A (ATCC® MYA-4256TH), ABC8A (ATCC® MYA-4260), NW16B, ABC10B, ABB6B (ATCC® MYA-4261), BA4A (ATCC® MYA-4252), AKK5A, AKK52C, HP4 (ATCC® MYA-4286), HP8 (ATCC® MYA-4284), or NW9A) that feed on Dd and Pcc at 10° C. on potatoes.

Results from 11 Dicty strains screened against Dd at 10° C. are presented in FIG. 6. Data was analyzed for significance using a one-way analysis of variance (ANOVA; alpha =0.05) with Tukey's honest significant difference (HSD) test to compare means between the treatments and the No Dicty control. A reduction in Dd proliferation when potato discs were treated with Dicty strains Cohen 9, Cohen 36, WS-15, Maryland 18a, BAF6A, NW2, and SO3A.

The Alaskan Dicty strains, and those identified in Example 1, are further tested against coinfections of Dd and Pcc. It is useful to identify Dicty strains that can suppress Dd and Pcc coinfections as these two pathogens have been isolated together from diseased potatoes (15). The ability of Dicty strains with different feeding preferences (Dd vs. Pcc) to complement each other when administered as a cotreatment is assayed.

Full text: Click here
Patent 2024
A-A-1 antibiotic Agar Amoeba Bacteria Biofilms Buffers Coinfection Cold Temperature Combined Modality Therapy Dickeya Dictyosteliida Enterobacteriaceae Extracellular Polymeric Substance Matrix Extracellular Polymeric Substances High-Throughput Screening Assays Human Body Humidity Microscopy neuro-oncological ventral antigen 2, human Nutrients Pathogenicity Pectobacterium Phenotype Plant Tubers polycarbonate potassium phosphate Scanning Electron Microscopy Solanum tuberosum Sporangia Spores Sterility, Reproductive Strains Technique, Dilution Tissue, Membrane Tissues Wounds
Not available on PMC !

Example 4

Syphilis is an STI that can cause long-term complications if not treated correctly. Symptoms in adults are divided into stages. These stages are primary, secondary, latent, and late syphilis. In pregnant women, having syphilis can lead to giving birth to a low birth weight baby. It can also lead to delivering the baby too early or stillborn (CDC fact sheet, 2015).

Although T. pallidum cannot be grown in culture, there are many tests for the direct and indirect diagnosis of syphilis. Still, there is no single optimal test. Direct diagnostic methods include the detection of T. pallidum by microscopic examination of fluid or smears from lesions, histological examination of tissues or nucleic acid amplification methods such as polymerase chain reaction (PCR). Indirect diagnosis is based on serological tests for the detection of antibodies (Ratnam S, Can J Infect Dis Med Microbiol 2005). Treatment includes a single dose of intramuscular administration of penicillin (2.4 Million units).

In some embodiments, the disclosed device can be used to detect syphilis infections from menstrual blood or cervicovaginal fluids.

Full text: Click here
Patent 2024
Adult Antibodies BLOOD Childbirth Diagnosis Globus Pallidus Infant Infection Medical Devices Menstruation Microscopy Nucleic Acid Amplification Techniques Penicillins Polymerase Chain Reaction Pregnant Women Syphilis Syphilis, tertiary Tests, Serologic Tissues

Top products related to «Microscopy»

Sourced in United States, United Kingdom, Germany, China, Canada, Japan, Italy, France, Belgium, Australia, Uruguay, Switzerland, Israel, India, Spain, Denmark, Morocco, Austria, Brazil, Ireland, Netherlands, Montenegro, Poland
Matrigel is a solubilized basement membrane preparation extracted from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, a tumor rich in extracellular matrix proteins. It is widely used as a substrate for the in vitro cultivation of cells, particularly those that require a more physiologically relevant microenvironment for growth and differentiation.
Sourced in Japan, United States, Germany, Italy, Denmark, United Kingdom, Canada, France, China, Australia, Austria, Portugal, Belgium, Panama, Spain, Switzerland, Sweden, Poland
The BX51 microscope is an optical microscope designed for a variety of laboratory applications. It features a modular design and offers various illumination and observation methods to accommodate different sample types and research needs.
Sourced in United States, Germany, Japan, United Kingdom, China, Italy, Sao Tome and Principe, France, Macao, Canada, Switzerland, Spain, Australia, Denmark, India, Poland, Israel, Belgium, Sweden, Ireland, Netherlands, Panama, Brazil, Portugal, Czechia, Puerto Rico, Austria, Hong Kong, Singapore
DAPI is a fluorescent dye that binds strongly to adenine-thymine (A-T) rich regions in DNA. It is commonly used as a nuclear counterstain in fluorescence microscopy to visualize and locate cell nuclei.
Sourced in Japan, United States, Germany, China, United Kingdom, India, Italy
The Olympus Inverted Microscope is a versatile optical instrument designed for the observation and analysis of samples. It features an inverted configuration, with the objective lenses positioned below the specimen stage, allowing for the examination of cell cultures, microplates, and other samples that require an upright orientation. The inverted design provides a more convenient and accessible workspace for the user.
Sourced in United States, Germany, United Kingdom, Japan, China, Canada, Italy, Australia, France, Switzerland, Spain, Belgium, Denmark, Panama, Poland, Singapore, Austria, Morocco, Netherlands, Sweden, Argentina, India, Finland, Pakistan, Cameroon, New Zealand
DAPI is a fluorescent dye used in microscopy and flow cytometry to stain cell nuclei. It binds strongly to the minor groove of double-stranded DNA, emitting blue fluorescence when excited by ultraviolet light.
Sourced in United States, China, United Kingdom, Germany, Switzerland, Japan, Australia
Transwell chambers are a type of lab equipment used for cell culture and biological assays. They consist of a permeable membrane insert placed inside a well, allowing for the study of cell-cell interactions and the movement of molecules across a barrier. The core function of Transwell chambers is to provide a controlled environment for culturing cells and monitoring their behavior and permeability.
Sourced in United States, China, Germany, United Kingdom, Canada, Japan, France, Netherlands, Montenegro, Switzerland, Austria, Australia, Colombia, Spain, Morocco, India, Azerbaijan
Matrigel is a complex mixture of extracellular matrix proteins derived from Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells. It is widely used as a basement membrane matrix to support the growth, differentiation, and morphogenesis of various cell types in cell culture applications.
Sourced in United States, Germany, United Kingdom, Italy, China, Japan, France, Canada, Sao Tome and Principe, Switzerland, Macao, Poland, Spain, Australia, India, Belgium, Israel, Sweden, Ireland, Denmark, Brazil, Portugal, Panama, Netherlands, Hungary, Czechia, Austria, Norway, Slovakia, Singapore, Argentina, Mexico, Senegal
Triton X-100 is a non-ionic surfactant commonly used in various laboratory applications. It functions as a detergent and solubilizing agent, facilitating the solubilization and extraction of proteins and other biomolecules from biological samples.
Sourced in United States, China, United Kingdom, Germany, Australia, Japan, Canada, Italy, France, Switzerland, New Zealand, Brazil, Belgium, India, Spain, Israel, Austria, Poland, Ireland, Sweden, Macao, Netherlands, Denmark, Cameroon, Singapore, Portugal, Argentina, Holy See (Vatican City State), Morocco, Uruguay, Mexico, Thailand, Sao Tome and Principe, Hungary, Panama, Hong Kong, Norway, United Arab Emirates, Czechia, Russian Federation, Chile, Moldova, Republic of, Gabon, Palestine, State of, Saudi Arabia, Senegal
Fetal Bovine Serum (FBS) is a cell culture supplement derived from the blood of bovine fetuses. FBS provides a source of proteins, growth factors, and other components that support the growth and maintenance of various cell types in in vitro cell culture applications.
Sourced in United States, Germany, United Kingdom, Japan, China, France, Canada, Spain, Belgium, Italy, Australia, Austria, Denmark, Netherlands, Switzerland, Ireland, New Zealand, Portugal, Brazil, Argentina, Singapore, Poland, Ukraine, Macao, Thailand, Finland, Lithuania, Sweden
Hoechst 33342 is a fluorescent dye that binds to DNA. It is commonly used in various applications, such as cell staining and flow cytometry, to identify and analyze cell populations.

More about "Microscopy"

Microscopy is a critical technique for visualizing and analyzing the tiny details of cells, tissues, molecules, and other microscopic phenomena.
This powerful tool enables researchers to observe the intricate structures and dynamic processes of the natural world with unparalleled clarity and precision.
From biomedical research to materials science, microscopy plays a vital role in advancing our understanding of the microscopic realm.
Microscopy encompasses a wide range of imaging technologies, including light microscopy, electron microscopy, and scanning probe microscopy.
These techniques use various forms of electromagnetic radiation, such as visible light, x-rays, or electron beams, to magnify and capture images of samples at the micro- and nanoscale.
Techniques like confocal microscopy, fluorescence microscopy, and phase-contrast microscopy allow researchers to visualize specific cellular structures, track the movements of live cells, and characterize the composition of nanomaterials.
The use of microscopy in scientific research is further enhanced by complementary techniques and tools.
Matrigel, a specialized extracellular matrix, is often used in cell culture experiments to mimic the natural microenvironment and support the growth and differentiation of cells.
The BX51 microscope, an advanced optical microscope, is commonly used for a variety of applications, including fluorescence imaging and digital imaging.
Staining methods, such as DAPI (4',6-diamidino-2-phenylindole) and Hoechst 33342, enable the visualization of specific cellular components, such as nuclei.
Microscopy also plays a crucial role in the study of cell migration and invasion.
Transwell chambers, which allow for the controlled migration of cells across a membrane, are often used in combination with microscopy techniques to investigate cellular behavior.
Additionally, the use of detergents like Triton X-100 can be important in sample preparation for microscopy, as they help to permeabilize cell membranes and improve the accessibility of cellular structures.
The continual advancements in microscopy technologies, coupled with the integration of innovative tools and techniques, have empowered scientists to make groundbreaking discoveries and develop new solutions to complex problems.
Whether you're studying the ultrastructure of a virus, tracking the dynamics of live cells, or characterizing the composition of nanomaterials, microscopy remains an indispensable component of modern scientific inquiry.