The largest database of trusted experimental protocols

Metal puck

Manufactured by Ted Pella

The metal puck is a general-purpose laboratory equipment piece. It is a flat, circular metal disk that can be used for various purposes in a laboratory setting. The core function of the metal puck is to provide a stable and durable surface for holding or supporting samples, specimens, or other materials during experiments or analysis.

Automatically generated - may contain errors

2 protocols using metal puck

1

Atomic Force Microscopy of DNA Origami

Check if the same lab product or an alternative is used in the 5 most similar protocols
Imaging was performed using tapping mode on a Multimode VIII atomic force microscope (AFM) with an E-scanner (Bruker). Imaging was performed in TAE/Mg2+ buffer solution with DNP-S oxide-sharpened silicon nitride cantilevers and SNL sharp nitride levers (Bruker Probes) using resonance frequencies between 7–9 kHz of the narrow 100 μm, 0.38 N/m force constant cantilever. After self-assembly of the origami structure ≈20 μl of TAE/Mg2+ buffer solution was deposited onto a freshly cleaved mica surface (Ted Pella) glued to a metal puck (Ted Pella). After 30 s the mica surface was dried using a gentle stream of N2 and 5 μl of the origami solution was deposited onto the mica surface. After another 30 s, 30 μl of additional buffer solution was added to the sample. Imaging parameters were optimized for best image quality while maintaining the highest possible setpoint to minimize damage to the samples. Images were post-processed by subtracting a 1st order polynomial from each scan line. Drive amplitudes were approximately 0.11 V, integral gains ≈2, and proportional gains ≈4.
+ Open protocol
+ Expand
2

Atomic Force Microscopy of DNA Origami

Check if the same lab product or an alternative is used in the 5 most similar protocols
Imaging was performed using tapping mode on a Multimode VIII atomic force microscope (AFM) with an E-scanner (Bruker). Imaging was performed in TAE/Mg2+ buffer solution with DNP-S oxide-sharpened silicon nitride cantilevers and SNL sharp nitride levers (Bruker Probes) using resonance frequencies between 7–9 kHz of the narrow 100 μm, 0.38 N/m force constant cantilever. After self-assembly of the origami structure ≈20 μl of TAE/Mg2+ buffer solution was deposited onto a freshly cleaved mica surface (Ted Pella) glued to a metal puck (Ted Pella). After 30 s the mica surface was dried using a gentle stream of N2 and 5 μl of the origami solution was deposited onto the mica surface. After another 30 s, 30 μl of additional buffer solution was added to the sample. Imaging parameters were optimized for best image quality while maintaining the highest possible setpoint to minimize damage to the samples. Images were post-processed by subtracting a 1st order polynomial from each scan line. Drive amplitudes were approximately 0.11 V, integral gains ≈2, and proportional gains ≈4.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!