The largest database of trusted experimental protocols

Massprep robotic protein handling system

Manufactured by Waters Corporation
Sourced in United States

The MassPREP robotic protein-handling system is a laboratory equipment product designed for automated sample preparation and handling of proteins. The system is capable of performing tasks such as liquid handling, sample transfer, and plate preparation to support various protein-based applications.

Automatically generated - may contain errors

3 protocols using massprep robotic protein handling system

1

Tryptic Peptide Extraction and LC-MS/MS Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Protein bands were excised manually from Coomassie- or silver-stained gels and in-gel digested using a MassPREP robotic protein-handling system (Waters, Millford, MA, USA). Gel pieces were destained twice with 100 μl 50 mM ammonium bicarbonate (Ambic) containing 50% acetonitrile at 40°C for 10 min. Proteins were then reduced with 10 mM DTT in 100 mM Ambic for 30 min at 40°C and alkylated with 55 mM iodoacetamide in 100 mM Ambic for 20 min at 40°C followed by digestion with 0.3 μg trypsin (sequence grade, Promega, Madison, WI) in 50 mM Ambic for 5 h at 40°C. The tryptic peptides were extracted with 1% formic acid in 2% acetonitrile, followed by 50% acetonitrile twice. The liquid was evaporated to dryness and the peptides were separated on an EASY-spray column connected to an EASY-nLC 1000 system (Thermo Scientific). The peptides were eluted in a 60 min gradient (from 5–26% of buffer B (2% acetonitrile, 0.1% formic acid) in 55 min and up to 95% of buffer B in 5 min) at a flow rate of 300 nL/min and analysed on a Fusion Orbitrap mass spectrometer (Thermo Scientific). The spectra were analysed using the Mascot search engine v.2.5.1 (Matrix Science Ltd., UK).
+ Open protocol
+ Expand
2

Protein Identification by In-Gel Tryptic Digestion

Check if the same lab product or an alternative is used in the 5 most similar protocols
Protein bands were excised manually from a bis-tris 4%–12% gel, using western blotting as a location reference, and in-gel digested using a MassPREP robotic protein-handling system (Waters). Gel pieces were destained twice with 100 μl 50 mM ammonium bicarbonate (Ambic) containing 50% acetonitrile at 40°C for 10 min. Proteins were reduced with 10 mM DTT in 100 mM Ambic for 30 min at 40°C and alkylated with 55 mM iodoacetamide in 100 mM Ambic for 20 min at 40°C followed by in-gel digestion with 0.3 μg Trypsin (Sequence grade, Promega) in 50 mM Ambic for 5 h at 40°C. The tryptic peptides were extracted with 1% formic acid in 2% acetonitrile, followed by 50% acetonitrile twice. The liquid was evaporated to dryness and the peptides were separated on an EASY-spray column connected to an EASY-nLC 1000 system (Thermo Scientific). The peptides were eluted in a 60 min gradient (from 5% to 26% of buffer B (2% acetonitrile, 0.1% formic acid) in 55 min and up to 95% of buffer B in 5 min) at a flow rate of 300 nL/min and analyzed on a Fusion Orbitrap mass spectrometer (Thermo Scientific). The spectra were analyzed using the Mascot search engine v.2.4 (Matrix Science Limited).
+ Open protocol
+ Expand
3

Proteomic Analysis of Protein Complexes

Check if the same lab product or an alternative is used in the 5 most similar protocols
Protein bands of interest were excised from SDS-PAGE gels and tryptically digested using the manufacturer's recommended protocol on the MassPrep robotic protein handling system (Waters). The extracted peptides from each sample were analyzed by means of nanoLC-ESI-MS/MS using the NanoAcquity/Q-ToFUltima Global instrumentation (Waters) using a 45-min LC gradient. All MS data were corrected for mass drift using reference data collected from the [Glu1]-Fibrinopeptide B (human—F3261 Sigma) sampled each minute of data collection. The data were then used to interrogate a database made up of the predicted protein sequences from RLP1 or RPP1 appended with the common Repository of Adventitious Proteins sequences (http://www.thegpm.org/cRAP/index.html) using ProteinLynx Global Server v2.3. All protein identification was carried out in the in-house Biological Mass Spectrometry and Proteomics Facility of the School of Life Sciences at the University of Warwick.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!