The largest database of trusted experimental protocols

Cd71 antibody ox26

Manufactured by Santa Cruz Biotechnology

The CD71 antibody (OX26) is a laboratory research tool used to detect and study the CD71 protein, also known as the transferrin receptor. This antibody is commonly used in flow cytometry, immunohistochemistry, and other immunological applications to identify and analyze cells expressing the CD71 protein.

Automatically generated - may contain errors

2 protocols using cd71 antibody ox26

1

Fabrication and Characterization of OX26-Functionalized Gold Nanoparticles

Check if the same lab product or an alternative is used in the 5 most similar protocols
1 mL of 1% poly (ethylene glycol)-carboxylic acid (average MW 5 kDa, Sigma-Aldrich) was added to 10 mL of the GNP solution under continuous stirring at room temperature for 24 h. Then, the resulting solution was centrifuged for 30 min at 14,000 rpm to separate the unbound constituents of C-PEGylated NPs, and again the pellet was resuspended in 0.1 M phosphate-buffered saline (pH 7.4). To this solution was added 20 µL of EDC/NHS (Sigma-Aldrich) (75 mM/30 mM, v/v, 1:1) to activate the GNP solution as a coupling agent. After washing with DI water, 5 μL of the CD71 antibody (OX26) (Santa Cruz Biotechnology) was added to the resulting solution. After continuous stirring for 5 h at room temperature, the non-bonded OX26 antibodies were removed by centrifugation at 20,000 rpm for 60 min at 4°C. Finally, the pellet was resuspended in 5 mL of 0.1 M phosphate-buffered saline (pH 7.4). FTIR spectrum of dried bare and OX26@GNPs was performed by an IR Pestige-21 Shimadzu spectrometer to confirm GNP surface decoration with an OX26 antibody. However, measurement of UV–Vis spectra of the solution at 500–600 nm was carried out using a 3–5 mm quartz cuvette on a UV–Vis Perkin Elmer Lambda 25 spectrophotometer (United Kingdom).
+ Open protocol
+ Expand
2

Synthesis of Selenium Nanoparticles with PEG Coating

Check if the same lab product or an alternative is used in the 5 most similar protocols
Here, we describe our synthesis protocol for preparation of selenium nanoparticles (NPs) with selenium core and polyethylene glycol (PEG) surface coating. Initially, 2 μg/mL poly (ethylene glycol)-carboxylic acid functionalized (average Mw 5 kDa, Sigma- Aldrich) was directly mixed with 1800 μL of 0.1 M selenious acid 98% (Sigma-Aldrich) in 10 mL deionized (DI) water, by constant stirring. Then, 3 mL of aqueous 0.1 M ascorbic acid solution (A92902, Sigma-Aldrich) was added dropwise and the resulting solution was stirred at room temperature. After 30 min, 20 μL EDC/NHS (Sigma-Aldrich) (75 mM/30 mM, v/v, 1:1) solutions was directly added into the Se-containing solution and the mixture was stirred for 30 min. After washing by DI water, 5 μL of CD71 antibody (OX26) (Santa Cruz Biotechnology) was added into Se suspension and the mixture was stirred at room temperature for 5 h. The non-bonded OX26 antibodies were removed by centrifugation at 20,000 rpm for 60 min at 4 °C. Then, the pellets were resuspended in Milli-Q water. To evaluate the impact of NP-protein interactions on cellular uptake and survival in vitro, FITC (Fluorescein isothiocyanate) - OX26 (Santa Cruz Biotechnology) was used instead of CD71 antibody (OX26).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!