The largest database of trusted experimental protocols

Plan fluor 10 0.30 dic l n1

Manufactured by Hamamatsu Photonics

The Plan Fluor 10×/0.30 DIC L/N1 is a microscope objective lens manufactured by Hamamatsu Photonics. It has a magnification of 10x and a numerical aperture of 0.30. The lens is designed for differential interference contrast (DIC) imaging and is compatible with N1 mounting standards.

Automatically generated - may contain errors

2 protocols using plan fluor 10 0.30 dic l n1

1

Chemotaxis Assay for Neural Crest Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
For chemotaxis assays, migration of explants to Sdf-1 was assessed using a bead assay (Theveneau et al., 2010 (link)). This was done by incubating heparin-acrylic beads (Sigma-Aldrich) overnight at 4°C in PBS supplemented with 1 µg/ml Sdf-1 and placing the beads ∼1 mm apart in a line of silicone grease (VWR) on fibronectin-coated dishes. Explants were then plated perpendicularly at a distance of 250–500 µm. To test the effects of Ca2+ buffering, explants were incubated for 30 min with 50 µM BAPTA-AM (Cambridge Bioscience) or EGTA-AM (AnaSpec). Time-lapse imaging was performed in Danilchick’s medium using an upright microscope (Eclipse 80i; Nikon) fitted with an objective (Plan Fluor 10×/0.30 DIC L/N1) and a camera (ORCA-05G; Hamamatsu Photonics). Data were acquired using SimplePCI software. Tracking of migrating neural crest cells was performed using the ImageJ Manual Tracking plug-in. Immunocytochemistry was performed using a primary rabbit antibody to phosphopaxillin Tyr118 (1:200 dilution; EMD Millipore; Theveneau et al., 2013 (link)). Explants were costained with 2 µg/ml phallodin and 2 µg/ml DAPI.
+ Open protocol
+ Expand
2

Time-lapse Imaging of Cell Behaviors

Check if the same lab product or an alternative is used in the 5 most similar protocols
For time-lapse recordings, images were captured every 3–5 min for a total of 8 h using Plan Fluor 10×/0.30 DIC L/N1 objectives with DM5500 and DMRXA2 compound microscopes (Leica Biosystems) at 18°C with either a DFC 300FX camera (Leica Biosystems) and LAS acquisition software or an Orca-5G camera (Hamamatsu Photonics) and SimplePCI software. For in vivo imaging, embryos were immobilized onto plasticine. Time-lapse and NCC tracking was performed using the ImageJ Manual Tracking plug-in as previously described (Carmona-Fontaine et al., 2008 (link); Matthews et al., 2008 (link)). Time-lapse imaging for CIL and CoA assays was performed at 18°C in Danilchick’s medium using an upright microscope (Eclipse 80i; Nikon) fitted with an objective (Plan Fluor 10×/0.30 DIC L/N1) and a camera (ORCA-05G; Hamamatsu Photonics). Data were acquired using SimplePCI software. Confocal images were acquired at 22°C in Danilchick’s medium using a TCS SPE upright microscope (Leica Biosystems) fitted with a HC PL APO 20×/0.75 IMM CS2 water objective. ISH images were captured at 18°C using a stereomicroscope (MZ FLIII; Leica Biosystems) fitted with a Plan 1.0×/0.125 objective and a camera (DFC420; Leica Biosystems). Data were acquired using IM50 v5 software (Leica Biosystems).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!