The largest database of trusted experimental protocols

Jsm 35 scanning electron microscope

Manufactured by JEOL
Sourced in Japan

The JSM-35 is a scanning electron microscope (SEM) manufactured by JEOL. The SEM is a scientific instrument that uses a focused beam of electrons to generate detailed images of the surface of a sample. The JSM-35 is capable of magnifying samples up to 100,000 times, allowing for high-resolution observations and analysis of materials at the microscopic level.

Automatically generated - may contain errors

Lab products found in correlation

2 protocols using jsm 35 scanning electron microscope

1

Visualizing Synthesized Silver Nanoparticles

Check if the same lab product or an alternative is used in the 5 most similar protocols
To visualize the shape and properties of newly synthesized AgNPs (naked AgNPs, AgNP-TBA, and AgNP-MUA), the scanning electron microscopy (SEM) technique was used. Tested samples were deposited on cleaned silicon p-type (100) plates. Then, images of deposits were obtained in the secondary electron mode at 25 kV energy using a JSM-35 scanning electron microscope (JEOL, 3-1-2 Musashino, Akishima, Tokyo, Japan). AgNPs were studied in the as-prepared pristine state and, sometimes, images of large particles were slightly distorted as a result of their charging under electron beam irradiation.
+ Open protocol
+ Expand
2

Microscopic Analysis of Trichophyton tonsurans

Check if the same lab product or an alternative is used in the 5 most similar protocols

Trichophyton tonsurans strain RCPFF 214/898, isolated from a human patient with onychomycosis, was obtained from the Russian Collection of Pathogenic Fungi, St. Petersburg (Russia). Identity was confirmed by sequencing the rDNA ITS locus. The strain was grown on solid CzA at 28ºС and investigated after 5, 10, 20 and 30 days of cultivation. Colonies were photographed with an Olympus BX 51 camera. For scanning electron microscopy (SEM), small parts of fungal colonies were fixed in 3% glutaraldehyde (in cacodylate buffer, pH 7.2) for 3 h, post-fixed overnight in 1% osmium tetroxide in the same buffer, dehydrated by ethanol series (30%→50%→70%), critical-point dried (HCP-2) for 15 min, coated with gold and observed in a JSM 35 scanning electron microscope (Jeol, Tokyo, Japan).
For transmission electron microscopy (TEM), blocks of nutrient medium with parts of fungal colonies were fixed during the 3 h in 3% glutaraldehyde and post-fixed for 10 h in 1% osmium tetroxide. Subsequently, samples were dehydrated through an ethanol and acetone series and embedded in epon-araldite epoxy resin. Ultrathin sections were cut with an Ultratome 2088 (LKB, Bromma, Sweden), stained with uranyl acetate and lead citrate and were investigated under a TEM Jem 100 SX (Jeol).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!