The largest database of trusted experimental protocols

0.22 μm pore sized filters

Manufactured by Merck Group

The 0.22 μm pore-sized filters are a type of laboratory equipment used for filtration purposes. These filters have a pore size of 0.22 micrometers, which allows them to remove small particles, microorganisms, and other contaminants from liquids or gases. The filters are designed to provide a reliable and consistent filtration process in various laboratory settings.

Automatically generated - may contain errors

3 protocols using 0.22 μm pore sized filters

1

Isolation and Analysis of Phage Nucleic Acids

Check if the same lab product or an alternative is used in the 5 most similar protocols
For isolation and analysis of phage nucleic acids, culture supernatants containing phage particles were filtered through 0.22 μm pore-sized filters (Millipore). The filtrates were mixed with one-fourth volume of a solution containing 20% polyethylene glycol (PEG-6000) and 10% NaCl, and centrifuged at 12000 x g to precipitate phage particles. The precipitate was dissolved in a solution containing 20 mM Tris-Cl (pH 7.5), 60mM Kcl, 10mM MgCl, 10mM NaCl, and digested with pancreatic DNAseI (100 units/ml) and RNAse A (50 μg/ml) at 37°C for 2 hours. The solution was extracted with phenol-chloroform, and the total nucleic acids were precipitated with ethanol. Phage nucleic acids were suspended in deionized water and purified using the SV Minipreps DNA purification system (Promega Madison, USA). The phage nucleic acid was digested with restriction endonucleases (Invitrogen Corporation, Carlsbad, CA) and analyzed by agarose gel electrophoresis following standard procedures to initially check for diversity and select different phages for sequencing.
+ Open protocol
+ Expand
2

Phage Purification and Isolation

Check if the same lab product or an alternative is used in the 5 most similar protocols
The samples positive for phages were then serially diluted, mixed with soft agar, and overlaid on hard bottom agar and incubated for 16–17 h at 37°C as described above. Next day, lytic plaque zones were collected by cutting the soft layer from the plate using sterile cut tips and placing them separately in 500 μl of logarithmic-phase cells, vortexed, and incubated at 37°C for 20 min. Then 3 ml of LB broth was added and incubated overnight at 37°C. Then, the culture was centrifuged at 10,000 × g for 20 min, and the supernatant was filtered through 0.22-μm pore-sized filters (Millipore) to exclude bacteria. The number of phage particles in the filtered supernatant was determined by testing serial dilutions of the supernatant with the host strain. This method was repeated for three successive times to obtain purified phages.
+ Open protocol
+ Expand
3

Phage Nucleic Acid Isolation and Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
For isolation and analysis of phage nucleic acids, culture supernatants containing phage particles were filtered through 0.22 μm pore-sized filters (Millipore). The filtrates were mixed with one-fourth volume of a solution containing 20% polyethylene glycol (PEG-6000) and 10% NaCl, and centrifuged at 12000 x g to precipitate phage particles. The precipitate was dissolved in a solution containing 20 mM Tris-Cl (pH 7.5), 60 mM Kcl, 10 mM MgCl, 10 mM NaCl, and digested with pancreatic DNAseI (100 units/ml) and RNAse A (50 μg/ml) at 37 °C for 2 hours. The solution was extracted with phenol-chloroform, and the total nucleic acids were precipitated with ethanol. Phage nucleic acids were suspended in deionized water and purified using the SV Minipreps DNA purification system (Promega Madison, USA). The phage nucleic acid was digested with restriction endonucleases (Invitrogen Corporation, Carlsbad, CA) and analyzed by agarose gel electrophoresis following standard procedures to initially check for diversity and select different phages for sequencing.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!