The largest database of trusted experimental protocols

3 protocols using anti γ tubulin c 20

1

Analyzing Cell Cycle Regulators

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cell lysates having equal protein concentrations were loaded on a Criterion TGX 4–20% precast polyacrylamide gel (Bio-Rad) and transferred onto a PVDF membrane. Primary antibodies: anti-CENP-F (ab5) (Abcam), anti-BUB1 (B3), anti-ZW10 (3363C4a), anti-vinculin (H-300), anti-γ-tubulin (C-20), anti α-tubulin (Santa Cruz Biotechnology) and anti β-actin (Sigma Aldrich). HRP-conjugated secondary antibody (Cell Signaling Technology) was used. ImageJ (Fiji software, https://fiji.sc/) were used to quantify western blot signals.
+ Open protocol
+ Expand
2

EGCG and Radiation-Induced DNA Damage Quantification

Check if the same lab product or an alternative is used in the 5 most similar protocols
Cells (cultured with or without AGI-5198) were plated at a density of 300,000 cells/well in 6-well plates and left to adhere overnight. After 24 h incubation with EGCG (0, 50, or 100 μM), cells were irradiated with 0, 2, or 4 Gy. After 30 min, cytosolic extracts were prepared in 1× RIPA buffer (Cell Signaling Technologies) containing 1 mM phenylmethylsulfonyl fluoride (PMSF). Cell extracts were sonicated to release nuclear proteins. Protein samples (25 μg) were electrophoresed on 10% SDS-PAGE gels and electroblotted onto nitrocellulose (GE Healthcare). Blots were stained with anti-γH2AX antibody (Ser139; #2577; Cell Signaling Technologies) and anti-γ-tubulin (C20) (Santa Cruz Biotechnology, Dallas, TX, sc-7396), followed by appropriate secondary antibodies labeled with IRDye680 or IRDye800 (ThermoFisher). Signals were visualized and quantified using the Odyssey system (Li-COR, Lincoln, NE).
+ Open protocol
+ Expand
3

Western Blot Analysis of Protein Targets

Check if the same lab product or an alternative is used in the 5 most similar protocols
A total of 40 μg protein extract was boiled for 10 min in SDS sample buffer, separated by 12% SDS-PAGE and transferred to a nitrocellulose membrane by electroblotting as reported in Di Sanzo et al. (38 (link)). The nitrocellulose membranes were incubated overnight at 4°C with the following antibodies: (a) anti-CXCR4 (1:500; Abcam), (b) anti-HIF-1α (H-206) (1:200; Santa Cruz Biotechnology), (c) anti-p65 (C-20) (sc-372, 1:1,000; Santa Cruz Biotechnology), (d) anti-HDAC (1:5,000; Sigma-Aldrich), (e) anti-HA probe (F-7) (1:1,000; Santa Cruz Biotechnology), (f) anti-Vimentin, (g) anti-E-cadherin, (h) anti-Snail, (i) anti-Slug (1:1,000; Cell Signaling Technology, Danvers, MA, USA), (l) anti-FtH (1:200; Santa Cruz Biotechnology), (m) anti-γ-Tubulin (C-20) (1:2,000; Santa Cruz Biotechnology), (n) anti-Nucleolin (D4C7O) (1:1,000; Cell Signaling Technology) over-night at 4°C, followed by incubation with goat anti-rabbit and mouse anti-goat secondary antibodies (1:5,000; Santa Cruz Biotechnology). Membranes were incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies and immunoreactive bands were visualized with the ECL Western blotting detection system (BioRad, Hercules, CA, USA).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!