The largest database of trusted experimental protocols

Solvesso 150

Manufactured by AkzoNobel

Solvesso 150 is a high-boiling-point aromatic solvent produced by AkzoNobel. It is a clear, colorless liquid with a characteristic odor. Solvesso 150 is primarily used as a component in various industrial formulations and applications.

Automatically generated - may contain errors

Lab products found in correlation

8 protocols using solvesso 150

1

Olefin Copolymerization with Maleic Anhydride

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 3

(MA/C20-C24, in Solvesso™ 150)

A 2 L glass reactor with anchor stirrer was initially charged with a mixture of C20-C24 olefins (363.2 g, average molar mass 296 g/mol) and Solvesso™ 150 (231.5 g, DHC Solvent Chemie GmbH). The mixture was heated to 160° C. in a nitrogen stream and while stirring. To this were added, within 5 h, a solution of di-tert-butyl peroxide (29.6 g, from Akzo Nobel) in Solvesso™ 150 (260.5 g) and molten maleic anhydride (120.3 g). The reaction mixture was stirred at 150° C. for 1 h and then cooled to 95° C. At this temperature, water (19.9 g) was added within 3 h and then stirring was continued for 11 h.

GPC (eluent: THF+1% trifluoroacetic acid, polystyrene standard) showed a polymer with Mn=1210 g/mol, Mw=2330 g/mol, polydispersity 1.9.

The copolymer had a ratio of carbon atoms per acid group of 13; the acid number was 210.8 mg KOH/g.

+ Open protocol
+ Expand
2

Synthesis of Polyolefin-Maleic Anhydride Copolymer

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 4

(MA/C20-C24, in Solvesso™ 150)

A 2 L glass reactor with anchor stirrer was initially charged with a mixture of C20-C24 olefins (371.8 g, average molar mass 296 g/mol) and Solvesso™ 150 (420.7 g, DHC Solvent Chemie GmbH). The mixture was heated to 150° C. in a nitrogen stream and while stirring. To this were added, within 3 h, a solution of di-tert-butyl peroxide (5.71 g, from Akzo Nobel) in Solvesso™ 150 (50.2 g) and molten maleic anhydride (123.2 g). The reaction mixture was stirred at 150° C. for 1 h and then cooled to room temperature. A 250 mL two-neck flask with attached reflux condenser was initially charged with 160 g of the copolymer thus obtained and 3.63 g of water. The mixture was stirred at 95° C. for 16 h.

The copolymer had a ratio of carbon atoms per acid group of 13; the acid number was 210.8 mg KOH/g.

D. Use Examples

+ Open protocol
+ Expand
3

Copolymerization of C20-C24 Olefins and Maleic Anhydride

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 3

A 6 L metal reactor having an anchor stirrer was initially charged with a mixture of C20-C24 olefins (1743 g, average molar mass 296 g/mol) and Solvesso 150 (1297 g, DHC Solvent Chemie GmbH, Speldorf). The mixture was heated to 150° C. in a nitrogen stream and while stirring. To this were added, within 5 h, a solution of di-tert-butyl peroxide (23.7 g, from Akzo Nobel) in Solvesso 150 (912 g) and molten maleic anhydride (577 g). The reaction mixture was stirred at 150° C. for 1 h and then cooled to 110° C. At this temperature, with an increase in pressure, water (95 g) was added and then stirring was continued for 3 h.

GPC (in THF) gave an Mn=1500 g/mol, Mw=3200 g/mol for the copolymer, which corresponds to a polydispersity of 2.1.

The copolymer had a ratio of carbon atoms per acid group of 13; the acid number determined by the above method was 210.8 mg KOH/g.

+ Open protocol
+ Expand
4

Synthesis of C20-C24 Olefin Copolymer

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

A 2 L glass reactor having an anchor stirrer was initially charged with a mixture of C20-C24 olefins (363.2 g, average molar mass 296 g/mol) and Solvesso 150 (231.5 g, DHC Solvent Chemie GmbH, Speldorf). The mixture was heated to 160° C. in a nitrogen stream and while stirring. To this were added, within 5 h, a solution of di-tert-butyl peroxide (29.6 g, from Akzo Nobel) in Solvesso 150 (260.5 g) and molten maleic anhydride (120.3 g). The reaction mixture was stirred at 160° C. for 1 h and then cooled to 95° C. At this temperature, water (19.9 g) was added within 3 h and then stirring was continued for 11 h.

GPC (in THF) gave an Mn=1210 g/mol, Mw=2330 g/mol for the copolymer, which corresponds to a polydispersity of 1.9.

The copolymer had a ratio of carbon atoms per acid group of 13; the acid number determined by the above method was 210.8 mg KOH/g.

+ Open protocol
+ Expand
5

Synthesis of Olefin-Maleic Anhydride Copolymers

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 3

A 6 L metal reactor having an anchor stirrer was initially charged with a mixture of C20-C24 olefins (1743 g, average molar mass 296 g/mol) and Solvesso 150 (1297 g, DHC Solvent Chemie GmbH, Speldorf). The mixture was heated to 150° C. in a nitrogen stream and while stirring. To this were added, within 5 h, a solution of di-tert-butyl peroxide (23.7 g, from Akzo Nobel) in Solvesso 150 (912 g) and molten maleic anhydride (577 g). The reaction mixture was stirred at 150° C. for 1 h and then cooled down to 110° C. At this temperature, water (95 g) was added with increasing pressure and then the mixture was stirred for a further 3 h. GPC (in THF) gave an Mn=1500 g/mol, Mw=3200 g/mol for the copolymer, which corresponds to a polydispersity of 2.1.

+ Open protocol
+ Expand
6

Copolymerization of Olefins and Maleic Anhydride

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 1

A 2 L glass reactor having an anchor stirrer was initially charged with a mixture of C20-C24 olefins (363.2 g, average molar mass 296 g/mol) and Solvesso 150 (231.5 g, DHC Solvent Chemie GmbH, Speldorf). The mixture was heated to 160° C. in a nitrogen stream and while stirring. To this were added, within 5 h, a solution of di-tert-butyl peroxide (29.6 g, from Akzo Nobel) in Solvesso 150 (260.5 g) and molten maleic anhydride (120.3 g). The reaction mixture was stirred at 160° C. for 1 h and then cooled down to 95° C. At this temperature, water (19.9 g) was added within 3 h and the mixture was then stirred for a further 11 h.

GPC (in THF) gave an Mn=1210 g/mol, Mw=2330 g/mol for the copolymer, which corresponds to a polydispersity of 1.9.

+ Open protocol
+ Expand
7

Copolymerization of Olefins and Maleic Anhydride

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 2

A 6 L metal reactor having an anchor stirrer was initially charged with a mixture of C20-C24 olefins (1743 g, average molar mass 296 g/mol) and Solvesso 150 (1297 g, DHC Solvent Chemie GmbH, Speldorf). The mixture was heated to 150° C. in a nitrogen stream and while stirring. To this were added, within 5 h, a solution of di-tert-butyl peroxide (118.4 g, from Akzo Nobel) in Solvesso 150 (1041 g) and molten maleic anhydride (577 g). The reaction mixture was stirred at 150° C. for 1 h and then cooled to 110° C. At this temperature, with an increase in pressure, water (95 g) was added and then stirring was continued for 3 h.

GPC (in THF) gave an Mn=1420 g/mol, Mw=2500 g/mol for the copolymer, which corresponds to a polydispersity of 1.8.

The copolymer had a ratio of carbon atoms per acid group of 13; the acid number determined by the above method was 210.8 mg KOH/g.

+ Open protocol
+ Expand
8

Olefin-Maleic Anhydride Copolymer Synthesis

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 2

A 6 L metal reactor having an anchor stirrer was initially charged with a mixture of C20-C24 olefins (1743 g, average molar mass 296 g/mol) and Solvesso 150 (1297 g, DHC Solvent Chemie GmbH, Speldorf). The mixture was heated to 150° C. in a nitrogen stream and while stirring. To this were added, within 5 h, a solution of di-tert-butyl peroxide (118.4 g, from Akzo Nobel) in Solvesso 150 (1041 g) and molten maleic anhydride (577 g). The reaction mixture was stirred at 150° C. for 1 h and then cooled down to 110° C. At this temperature, water (95 g) was added with increasing pressure and then the mixture was stirred for a further 3 h. GPC (in THF) gave an Mn=1420 g/mol, Mw=2500 g/mol for the copolymer, which corresponds to a polydispersity of 1.8.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!