The largest database of trusted experimental protocols

Jeol2100f microscope

Manufactured by Hitachi
Sourced in Japan

The JEOL2100F is a high-resolution transmission electron microscope (TEM) designed for a wide range of applications in materials science, nanotechnology, and life sciences. It features a field emission gun (FEG) source, providing high-brightness illumination and excellent image resolution. The JEOL2100F enables the observation and analysis of nanoscale structures and compositions with high-quality imaging and analytical capabilities.

Automatically generated - may contain errors

2 protocols using jeol2100f microscope

1

Comprehensive Characterization of Nanomaterials

Check if the same lab product or an alternative is used in the 5 most similar protocols
Transmission electron microscopy (TEM) images were obtained on a JEOL-2100 microscope or a JEOL2100F microscope, with both instruments operated at an accelerating voltage of 200 kV. Field emission scanning electron microscopy (FESEM) images were obtained on a Hitachi S-4800 instrument. Fourier-transform infrared (FTIR) spectra were collected on Excalibur 3100 (Varian, USA) spectrophotometer using an attenuated total reflection mode over the range 4000–600 cm−1 at a resolution of 4 cm−1. X-ray photoelectron spectroscopic (XPS) data were obtained on a Quantum 2000 Scanning ESCA Microprobe (Physical Electronics) using monochromatic Al-Kα radiation ( = 1486.6 eV) as the excitation source. X-ray absorption fine structure (XAFS) data were collected at the Beijing Synchrotron Radiation Facility (BSRF), with the raw fluorescence mode data processed via background-subtraction, normalization and Fourier transformations using the standard procedures within the ATHENA program. Fluorescence spectra were recorded on F-4600 (Hitachi, Japan) luminescence spectrometer.
+ Open protocol
+ Expand
2

Scanning and Transmission Electron Microscopy of Bacterial Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
After incubation, the cells were harvested by centrifugation for 10 min at 5,000 × g and 4°C, and rinsed three times with 0.1 M PBS at pH 7.4. The pellet was collected, and the cells were fixed with 2.5% glutaraldehyde in 0.1 M PBS at 4°C for 12 h. Then, the cells were harvested by centrifugation at 5,000 × g and 4°C for 5 min, and subjected to gradual dehydration with ethanol (30, 50, 70, 80, 90, and 100%) for 10 min, respectively. Finally, the specimens were sputter-coated with gold under vacuum and subjected to microscopic examinations using Tescon Mira3 SEM, as described previously (Lv et al., 2011 (link)). For TEM observations, the MRSA252 cells treated with BER were harvested by centrifugation at 5,000 × g and 4°C for 10 min and processed as reported previously (Shi et al., 2017 (link)). The ultrathin sections were examined under a JEOL 2100F microscope (Hitachi, Tokyo, Japan).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!