The largest database of trusted experimental protocols

C1 single cell auto prep ifc chips

Manufactured by Standard BioTools

The C1 Single-Cell Auto Prep IFC chips from Standard BioTools are microfluidic devices designed to capture, isolate, and prepare single cells for downstream analysis. The chips contain an array of individual capture sites that facilitate the processing of multiple single cells simultaneously.

Automatically generated - may contain errors

2 protocols using c1 single cell auto prep ifc chips

1

Single-cell RNA-seq of parasitic nematodes

Check if the same lab product or an alternative is used in the 5 most similar protocols
For N. brasiliensis, three small (5–10 μm) C1 Single-Cell Auto Prep IFC chips (Fluidigm) were primed and 5000 cells were sorted directly into the chip. For P. chabaudi, cells were loaded at a concentration of 1700 cells μl-1 onto C1 small chips. To allow estimation of technical variability, 1 μl of a 1:4000 dilution of ERCC (External RNA Controls Consortium) spike-in mix (Ambion, Life Technologies) was added to the lysis reagent. Cell capture sites were visually inspected one by one using a microscope. The capture efficiency is described in Additional file 2: Tables S1 and S7.
The capture sites that did not contain single cells were noted and were removed from downstream analysis. Reverse transcription and cDNA preamplification were performed using the SMARTer Ultra Low RNA kit (Clontech) and the Advantage 2 PCR kit according to the manufacturer’s instructions on the C1 device. cDNA was harvested and diluted to 0.1–0.3 ng/μl and libraries were prepared in 96-well plates using a Nextera XT DNA Sample Preparation kit (Illumina) according to the protocol supplied by Fluidigm. Libraries were pooled and sequenced on an Illumina HiSeq2500 using paired-end 75-bp reads for N. brasiliensis and 100-bp reads for P. chabaudi.
+ Open protocol
+ Expand
2

Single-Cell RNA-Seq of Schistosoma mansoni

Check if the same lab product or an alternative is used in the 5 most similar protocols
For S. mansoni, three small (5–10 μm) C1 Single-Cell Auto Prep IFC chips (Fluidigm) were primed and 5000 cells were sorted directly into the chip. To allow estimation of technical variability, 1 μl of a 1:4000 dilution of ERCC (External RNA Controls Consortium) spike-in mix (Ambion, Life Technologies) was added to the lysis reagent. Cell capture sites were visually inspected one by one using a microscope. The capture sites that did not contain single cells were noted and were removed from downstream analysis. Reverse transcription and cDNA preamplification were performed using the SMARTer Ultra Low RNA kit (Clontech) and the Advantage 2 PCR kit according to the manufacturer’s instructions on the C1 device. cDNA was harvested and diluted to 0.1–0.3 ng/μl and libraries were prepared in 96-well plates using a Nextera XT DNA Sample Preparation kit (Illumina) according to the protocol supplied by Fluidigm. Libraries were pooled and sequenced on an Illumina HiSeq2500 using paired-end 75-bp reads.
Salmon was used to estimate gene expression counts [23 (link)]. Poor quality libraries were eliminated using Scater [24 (link)] based on exonic and mitochondrial read counts. For all queries, a gene was considered expressed if the Log10 (1+normalized count) was above 0.5. Gene overlap was tested using Fisher’s method. Counts and condition matrices are provided in S2 File.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!