The largest database of trusted experimental protocols

Gs junior sequencing platform

Manufactured by Roche

The Roche GS Junior sequencing platform is a compact, benchtop instrument designed for targeted DNA sequencing. It utilizes pyrosequencing technology to generate high-quality sequence data. The GS Junior provides a streamlined workflow for small-scale sequencing projects, enabling researchers to perform targeted genomic analysis.

Automatically generated - may contain errors

2 protocols using gs junior sequencing platform

1

cpn60 UT Region Universal Primer PCR

Check if the same lab product or an alternative is used in the 5 most similar protocols
Universal primer PCR targeting the 552–558 bp cpn60 UT region was performed using a mixture of cpn60 primers consisting of a 1:3 molar ratio of primers H279/H280:H1612/H1613, as described previously47 (link), 48 (link), 81 (link). To avoid cross-contamination, samples were handled in small batches, and a no template control was included with each set of PCR reactions. To allow multiplexing of samples in a single sequencing run, primers were modified at the 5′ end with one of 24 unique decamer multiplexing identification (MID) sequences, as per the manufacturer’s recommendations (Roche, Brandford, CT, USA). Amplicons were pooled in equimolar amounts for sequencing on the Roche GS Junior sequencing platform. The sequencing libraries were prepared using the GS DNA library preparation kit and emulsion PCR (emPCR) was performed with a GS emPCR kit (Roche Diagnostics, Laval, Canada).
+ Open protocol
+ Expand
2

Universal cpn60 UT Amplicon Sequencing

Check if the same lab product or an alternative is used in the 5 most similar protocols
Universal primer PCR targeting the 549–567 bp cpn60 UT region was performed using a mixture of cpn60 primers consisting of a 1:3 M ratio of primers H279/H280:H1612/H1613, as described previously [41 (link)–43 (link)]. To allow multiplexing of samples in a single sequencing run, primers were modified at the 5′ end with one of 24 unique decamer multiplexing identification (MID) sequences, as per the manufacturer’s recommendations (Roche, Brandford, CT, USA). Amplicons were pooled in equimolar amounts for sequencing on the Roche GS Junior sequencing platform. The sequencing libraries were prepared using the GS DNA library preparation kit, and emulsion PCR (emPCR) was performed with a GS emPCR kit (Roche Diagnostics, Laval, Canada).
Samples were handled in small batches to avoid cross-contamination, and experimental controls were included at several steps in the study. Regular monitoring of DNA extraction controls in our lab by universal PCR confirms that these procedures are sufficient to eliminate detectable template contamination of study samples. A no template control was also included in each set of PCR reaction as negative controls. Experimental controls were not sequenced as they did not yield any amplification.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!