The largest database of trusted experimental protocols

6 protocols using rabbit anti scf

1

Bone Marrow Protein Extraction and Western Blot

Check if the same lab product or an alternative is used in the 5 most similar protocols
Bone marrow was flushed out of the bone and then dissociated in 66% Trichoracetic acid (TCA) in water. Extracts were incubated on ice for at least 15 min and centrifuged at 16,100 × g at 4°C for 10 min. Precipitates were washed in acetone twice and the dried pellets were solubilized in 9M urea, 2% TritonX-100, and 1% DTT. Samples were separated on 4–12% Bis-Tris polyacrylamide gels (Invitrogen) and transferred to PVDF membrane (Millipore). The blots were incubated with primary antibodies overnight at 4°C and then with secondary antibodies. Blots were developed with the SuperSignal West Femtochemiluminescence kit (Thermo Scientific). Primary antibodies used: rabbit-anti-SCF (Abcam, catalogue number ab64677, 1:1000) and mouse-anti-Actin (Santa Cruz, clone AC-15, 1:20,000).
+ Open protocol
+ Expand
2

Protein Expression Analysis in HUVECs

Check if the same lab product or an alternative is used in the 5 most similar protocols
The pretreated HUVECs were washed by pre-cooling PBS three times, and the proteins were extracted by RIPA lysis containing 1% PMSF (Solarbio, Beijing, China). The concentration of proteins was measured according to the BCA protein assay kit (Solarbio, Beijing, China). The proteins were boiled for 5 min in SDS-PAGE loading buffer, and 30 μg of proteins was loaded to each lane and separated by 12% SDS-PAGE gels and transferred onto polyvinylidene fluoride (PVDF; Millipore, Billerica, MA, USA) membranes. The membranes were blocked by 5% non-fat milk for 1 h and then immersed in primary antibodies overnight at 4 °C; the primary antibodies are as follows: rabbit anti-GAPDH (1:10000; Proteintech, Chicago, IN, USA), rabbit anti-PLGF (1:1000; Abcam, Cambridge, UK), rabbit anti-SCF (1:10000; Abcam), and rabbit anti-VEGFR2 (1:1000; Cell Signaling Technology, USA). The membranes were incubated with horseradish peroxidase-conjugated secondary antibodies (1:10000; Proteintech) for 1 h. Chemiluminescence reagents (Millipore) were used for the development of band visualization. ImageJ software was used to analyzed the protein expression levels.
+ Open protocol
+ Expand
3

Splenic Endothelial Cell Protein Extraction and Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Approximately 30,000 CD45Ter119VE-cadherin+ splenic endothelial cells were flow cytometrically sorted into 50 μl of 66% Trichoracetic acid (TCA) in water. Extracts were incubated on ice for at least 15 min and centrifuged at 16,100 × g at 4°C for 10 min. Precipitates were washed in acetone twice and the dried pellets were solubilized in 9M urea, 2% TritonX-100, and 1% DTT. Samples were separated on 4-12% Bis-Tris polyacrylamide gels (Invitrogen) and transferred to PVDF membrane (Millipore). The blots were incubated with primary antibodies overnight at 4°C and then with secondary antibodies. Blots were developed with the SuperSignal West Femtochemiluminescence kit (Thermo Scientific). Primary antibodies used: rabbit-anti-SCF (Abcam, 1:1000) and mouse-anti-Actin (Santa Cruz, clone AC-15, 1:20,000).
+ Open protocol
+ Expand
4

Bone Marrow Protein Extraction and Western Blot

Check if the same lab product or an alternative is used in the 5 most similar protocols
Bone marrow was flushed out of the bone and then dissociated in 66% Trichoracetic acid (TCA) in water. Extracts were incubated on ice for at least 15 min and centrifuged at 16,100 × g at 4°C for 10 min. Precipitates were washed in acetone twice and the dried pellets were solubilized in 9M urea, 2% TritonX-100, and 1% DTT. Samples were separated on 4–12% Bis-Tris polyacrylamide gels (Invitrogen) and transferred to PVDF membrane (Millipore). The blots were incubated with primary antibodies overnight at 4°C and then with secondary antibodies. Blots were developed with the SuperSignal West Femtochemiluminescence kit (Thermo Scientific). Primary antibodies used: rabbit-anti-SCF (Abcam, catalogue number ab64677, 1:1000) and mouse-anti-Actin (Santa Cruz, clone AC-15, 1:20,000).
+ Open protocol
+ Expand
5

Splenic Endothelial Cell Protein Extraction and Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Approximately 30,000 CD45Ter119VE-cadherin+ splenic endothelial cells were flow cytometrically sorted into 50 μl of 66% Trichoracetic acid (TCA) in water. Extracts were incubated on ice for at least 15 min and centrifuged at 16,100 × g at 4°C for 10 min. Precipitates were washed in acetone twice and the dried pellets were solubilized in 9M urea, 2% TritonX-100, and 1% DTT. Samples were separated on 4-12% Bis-Tris polyacrylamide gels (Invitrogen) and transferred to PVDF membrane (Millipore). The blots were incubated with primary antibodies overnight at 4°C and then with secondary antibodies. Blots were developed with the SuperSignal West Femtochemiluminescence kit (Thermo Scientific). Primary antibodies used: rabbit-anti-SCF (Abcam, 1:1000) and mouse-anti-Actin (Santa Cruz, clone AC-15, 1:20,000).
+ Open protocol
+ Expand
6

SCF and c-kit Expression in Prostate Cancer

Check if the same lab product or an alternative is used in the 5 most similar protocols
Frozen prostate cancer sections were obtained and stained with rabbit anti-SCF (1:100; Abcam) and mouse anti-CD117/c-kit (1:400; Cell Signaling) antibodies after fixation in 4% paraformaldehyde. After incubation with primary antibodies, samples were washed and exposed goat anti-rabbit Alexa Fluor488 and anti-mouse Alexa Fluor568 (Invitrogen) secondary antibodies. The slides were mounted with medium containing DAPI (Dako) and images were taken by a TCS-SP (Leica) microscope. For quantification, the images were analyzed with ImagePro software (Media Cybernetics).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!