The TBK1si/rGO-PEG was diluted with distilled water, put on a copper grid with nitrocellulose, and then stained with phosphotungstic acid. Afterward, it was measured by Nano ZS-90 (Malvern Instruments, Malvern, UK) under room temperature. AFM (atomic force microscopy) images were taken by a Nanoscope V multimode atomic force microscope (Veeco Instruments, USA). TBK1si/rGO-PEG was diluted with ultrapure DI water with a final concentration of 1 × 10−6 M for AFM. Twenty μL TBK1si/rGO-PEG sample was placed on the brand new muscovite mica and dried the samples under critical point dryer. Photos were taken in the tapping mode under room temperature.
Nanoscope 5 multimode atomic force microscope
The Nanoscope V multimode atomic force microscope is a high-performance scanning probe microscope designed for nanoscale imaging and measurement. It utilizes a cantilever-based sensing system to detect and map surface topography with high resolution, providing detailed information about the physical and chemical properties of a wide range of samples.
4 protocols using nanoscope 5 multimode atomic force microscope
Functionalization of Graphene Oxide with PEG
The TBK1si/rGO-PEG was diluted with distilled water, put on a copper grid with nitrocellulose, and then stained with phosphotungstic acid. Afterward, it was measured by Nano ZS-90 (Malvern Instruments, Malvern, UK) under room temperature. AFM (atomic force microscopy) images were taken by a Nanoscope V multimode atomic force microscope (Veeco Instruments, USA). TBK1si/rGO-PEG was diluted with ultrapure DI water with a final concentration of 1 × 10−6 M for AFM. Twenty μL TBK1si/rGO-PEG sample was placed on the brand new muscovite mica and dried the samples under critical point dryer. Photos were taken in the tapping mode under room temperature.
Characterization of GO and Fe3O4@SiO2-GO Nanocomposite
Atomic Force Microscopy Analysis of Nanocellulose Suspensions
Ex Situ AFM Imaging of Amyloid Fibrils
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!