The largest database of trusted experimental protocols

Acroprep 0.2 m ghp membrane 96 well filter plates

Manufactured by Avantor
Sourced in United Kingdom

The AcroPrep™ 0.2 µm GHP Membrane 96 Well Filter Plates are laboratory equipment designed for filtration. The plates feature a 0.2 micron hydrophilic Supor® GHP membrane that can be used for sample preparation and clarification.

Automatically generated - may contain errors

2 protocols using acroprep 0.2 m ghp membrane 96 well filter plates

1

Simultaneous Saccharification and Fermentation for Ethanol Production

Check if the same lab product or an alternative is used in the 5 most similar protocols
Small scale simultaneous saccharification and fermentation (SSF) was conducted in 30 mL wide-necked glass vials containing 1 g (DM equivalent) of wet pretreated solid, made up to 17.9 mL with yeast nitrogen base (Formedium, Hunstanton, UK) at pH 5.0. The bottles were then autoclaved (121 °C, 15 min) to ensure sterility. The bottles were cooled to 25 °C, and 2 mL of yeast grown in Difco YM media (Fisher Scientific UK Ltd, Loughborough, UK), was added along with 100 µL Cellic® CTec2 (Novozymes, Bagsvaerd, Denmark), 20 FPU/g substrate. The yeast inoculum used was a Saccharomyces cerevisiae strain—NCYC 2826—chosen from the National Collection of Yeast Cultures (UK), selected on the basis of its high ethanol tolerance (15–20 % v/v). The inoculum had a viable cell count of 9.87 × 107 cells/mL. Bottles were incubated under continuous agitation (120 h, 25 °C) after which, a measured sample was boiled in gas tight screw cap tubes (Starlab Ltd, Milton Keynes, UK), centrifuged (13,000 rpm, 5 min) and supernatant filtered through AcroPrep™ 0.2 µm GHP Membrane 96 Well Filter Plates (VWR International Ltd, Lutterworth, UK) into a 96 deep well collection plate before analysis.
+ Open protocol
+ Expand
2

Acid Hydrolysis of Freeze-Dried Solids

Check if the same lab product or an alternative is used in the 5 most similar protocols
Freeze-dried solids were acid hydrolysed (72 % (w/w) H2SO4, 3 h, RT followed by dilution to 98 g/L H2SO4, and heating for 2.5 h, 100 °C) to convert polymeric sugars into their monomeric constituents [20 ] . The hydrolysed samples were cooled on ice (>10 min) and then centrifuged (2500 rpm, 2 min). To a 1 mL aliquot from each hydrolysed sample 100 µL ribose internal standard (30 mg/mL) was added. Samples were neutralised with CaCO3 (2.5 mL, 2 mol/L). The precipitated salt was removed by centrifugation (3000 rpm, 10 min). Filter plates (AcroPrep™ 0.2 µm GHP Membrane 96 Well Filter Plates, VWR International Ltd, Lutterworth, UK) were used to filter portions of each sample (1 mL) prior to HPLC by centrifugation at 500 rpm for 10 min. Deep well collection plates were sealed with pierceable lids (Starlab (UK) Ltd, Milton Keynes, UK) and loaded directly onto Series 200 LC instrument (Perkin Elmer, Seer Green, UK) equipped with a refractive index detector and employing an Aminex HPX-87P carbohydrate analysis column (Bio-Rad Laboratories Ltd, Hemel Hempstead, UK) with matching guard columns.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!