All slides were observed under a fluorescence microscope (Olympus BX50-FLA, Tokyo, Japan) using a mercury lamp using a 470–490 nm or a 360–370 nm band-pass filter to excite Alexa Fluor 488 or Hoechst dye, respectively. Light emitted from Alexa Fluor 488 or Hoechst dye was collected through a 515–550 nm band-pass filter or a 420 nm long-pass filter, respectively. Adobe Photoshop CS4 software (Adobe, Waltham, MA) was used for digital amplification of the images.
Fluoromounting medium
Fluoromounting medium is a liquid solution used to prepare samples for fluorescence microscopy. It is designed to preserve the fluorescent properties of labeled specimens, enabling clear visualization and analysis.
Lab products found in correlation
3 protocols using fluoromounting medium
Immunofluorescent Labeling of Tyrosine Hydroxylase
All slides were observed under a fluorescence microscope (Olympus BX50-FLA, Tokyo, Japan) using a mercury lamp using a 470–490 nm or a 360–370 nm band-pass filter to excite Alexa Fluor 488 or Hoechst dye, respectively. Light emitted from Alexa Fluor 488 or Hoechst dye was collected through a 515–550 nm band-pass filter or a 420 nm long-pass filter, respectively. Adobe Photoshop CS4 software (Adobe, Waltham, MA) was used for digital amplification of the images.
Quantifying Neuroprotective Astrocyte Effects via Immunofluorescence
For analysis of the neuroprotective effects of astrocytes, TH-immunopositive cells were counted under fluorescence microscope (Olympus BX50-FLA, Tokyo, Japan) in all areas of each chamber slide. Images were taken at 200× magnification.
For detection of intracellular superoxide anion production induced by the 6-OHDA treatment, 4 images were randomly chosen in each group. The integrated density of DHE-positive signals was measured quantitatively using a Macintosh computer-based image analysis system (NIH ImageJ 1.45s, NIH, Bethesda, MD, USA).
Immunofluorescent Quantification of Tyrosine Hydroxylase-Positive Cells
All slides were analyzed under a fluorescence microscope (Olympus BX50-FLA, Tokyo, Japan) using a mercury lamp through a 470–490 nm or 360–370 nm band-pass filter to excite Alexa Fluor 488 or Hoechst dye, respectively. The light emitted from Alexa Fluor 488 or Hoechst was collected through 515–550 nm band-pass filter or 420 nm long-pass filter, respectively. TH-immunopositive cells were counted under the microscope in all areas of each chamber slide. Counting was performed by an investigator blinded to the experiments.
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!