The largest database of trusted experimental protocols

Basic fibroblastic growth factor bfgf

Manufactured by Thermo Fisher Scientific
Sourced in United States

Basic fibroblastic growth factor (bFGF) is a protein that plays a role in the regulation of cell growth, proliferation, and differentiation. It is an important mediator of various cellular processes, including angiogenesis, wound healing, and tissue repair. bFGF is produced by a variety of cell types and is involved in the development and maintenance of various tissues and organs.

Automatically generated - may contain errors

4 protocols using basic fibroblastic growth factor bfgf

1

Isolation of Equine Bone Marrow Mesenchymal Stem Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
Bone marrow was collected aseptically from the sternebrae of horses being euthanized for unrelated reasons immediately following euthanasia. Using an 11-gauge Jamshidi bone marrow biopsy needle (VWR Scientific, Bridgeport, NJ) and 60 mL syringe containing 30,000 U of heparin, 30 mL of bone marrow was aspirated. Bone marrow samples were processed via density centrifugation with Ficoll-Paque Plus (GE Healthcare, Chicago, IL, USA) prior to seeding into flasks containing medium consisting of Dulbecco's Modified Eagle Medium (DMEM) with 1 g/L of D-glucose, 2 mM L-glutamine, and 1 mM sodium pyruvate (ThermoFisher Scientific, Hampton, NH), penicillin (100 U/mL)-streptomycin (100 μg/mL) solution (Invitrogen, Carlsbad, CA), 10% fetal bovine serum (FBS) (VWR Life Science Seradigm, VWR, Radnor, PA), and basic fibroblastic growth factor (bFGF, 1 ng/mL) (Invitrogen, Carlsbad, CA). Medium was changed every 48 h. Cells were passaged when they reached ~80% confluency using Trypsin-EDTA Cell Dissociation Reagent (ThermoFisher Scientific, Waltham, MA). Passage 2 (P2) cells were used for differentiation assays. Cell number and viability was determined using the Cellometer Auto 2000 Cell Viability Counter (Nexcelom Bioscience, Lawrence, MA) and ViaStain™ AOPI staining solution (Nexcelom Bioscience LLC, Lawrence, MA).
+ Open protocol
+ Expand
2

Dental Pulp Stem Cell Neural Differentiation

Check if the same lab product or an alternative is used in the 5 most similar protocols
The neural differentiation from dental pulp stem cells was obtained as reported in our previous study5 (link). Briefly, cells were cultured for 6 days in vitro (DIV) in the basic medium (DMEM), subsequently the medium was added with the following neural induction cocktail: 0.5 mM Isobutyl Methyl Xanthine (IBMX), 20 ng/ml human Epidermal Growth Factor (hEGF) 1 mM dibutyrylcAMP (dbcAMP), 10 ng/ml Nerve Growth Factor (NGF) and 10 ng/ml Brain-Derived Neurotrophic Factor (BDNF), 40 ng/ml basic Fibroblastic Growth Factor (bFGF), (all reagents were purchased from Invitrogen, Milan, Italy). Obtained neuronal differentiation, cells were grown in culture for 15 days in DMEM/FBS added with 10 µM retinoic acid21 .
+ Open protocol
+ Expand
3

Culturing and Quantifying Tumor Spheres

Check if the same lab product or an alternative is used in the 5 most similar protocols
H460 cells were suspended in serum-free DMEM/F12 medium (Gibco) containing B27 (Invitrogen), human recombinant epidermal growth factor EGF 20 ng/ml (PeproTech), basic fibroblastic growth factor bFGF 20 ng/ml (PeproTech) and plated at 500 to 30,000 cell/ml in ultralow-attachment 24- or 6-well plates (Corning, USA). The medium was replaced twice a week. Self-renewal capacity of the CSCs was examined by re-populating tumorspheres. Briefly, tumorspheres were collected by centrifugation, trypsinized, passed through a 45 mm strainer (BD, Biosciences), counted and replated in tumorsphere culture medium. Tumorspheres were defined as spheres with a diameter > 100 μm size. The numbers of tumorspheres were quantitated using Image J software (NIH, USA).
+ Open protocol
+ Expand
4

Enrichment of Cancer Stem Cells in Spheroid Culture

Check if the same lab product or an alternative is used in the 5 most similar protocols
The human NSCLC cell line A549 was obtained from the ATCC and grown in Ham’s F12 (Gibco, Grand Island, NY). Another human NSCLC cell line CL1–1 was kindly provided by Dr. Pan-Chyr Yang (Department of Internal Medicine, National Taiwan University Hospital, Taiwan, R.O.C.) and grown in Dulbecco modified Eagle medium (DMEM) (Gibco). HT29 (human colorectal cancer cell line) was obtained from the ATCC and grown in DMEM. Cells were cultured in F12 or DMEM containing 10 units/ml penicillin, 10 μg/ml streptomycin and 10% fetal bovine serum (FBS; Gibco). For enrichment of CSCs in spheroid culture, cancer cells were suspended in tumor sphere medium consisting of serum-free DMEM/F12, N2 supplement (Gibco), human recombinant epidermal growth factor (EGF) (20 ng/ml, PeproTech, Rocky Hill, NJ), and basic fibroblastic growth factor (bFGF) (10 ng/ml, PeproTech). Cell colonies > 50 μm in diameter and > 50% in area showing 3-dimensional structure and blurred cell margins were defined as spheres. Sphere numbers were counted at day 12 of culture. Treatment reagents included FAK inhibitor (10 μM) (Calbiochem, San Diego, CA), SB216763 (20 μM) (Sigma-Aldrich; St. Louis, MO), LY294002 (10 μM) (Abmole Bioscience, Houston, TX), and ICG001 (10 μM) (Abmole Bioscience).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!