The largest database of trusted experimental protocols

Pixis 100bx

Manufactured by Teledyne

The Pixis 100BX is a scientific instrument designed for imaging and data acquisition. It features a high-resolution CCD sensor that captures detailed images and data. The device is suitable for a range of laboratory applications, but a detailed description of its intended use is not available.

Automatically generated - may contain errors

2 protocols using pixis 100bx

1

Plasmonic Nanoantenna Scattering Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
The plasmon resonance scattering measurements were carried out on an inverted dark-field microscope (eclipse Ti-U, Nikon) using a ×40 objective lens (numerical aperture, 0.6) and a dark-field condenser (0.8 < numerical aperture < 0.95). A halogen lamp (100 W) was used as a source of white light to generate plasmon resonance scattering light. The dark-field images were captured by a true-colour digital camera (Nikon DS-fi). The light scattered from the bifunctionalized nanoantennae was split by a monochromator (grating density, 300 lines mm–1; blazed wavelength, 500 nm; Acton SP2300i, Princeton Instruments). An IsoPlane-320 spectrometer was used, and the split light was collected by a charge-coupled device (Pixis 100BX, Princeton Instruments). An a.c. EF of 3 MHz at 0.65 V was applied for 10 min, and scattering spectra were monitored (1,000 frames recorded). The exposure time was 500 ms. The samples for plasmon resonance scattering were prepared by immobilizing nanoantennae on ITO. First, ITO slides were treatment with ethanol, acetone and water under sonication. Next, 50 µl nanoantennae solution was drop-casted on the ITO slides for 10 min, followed by a single-step washing and rinsing with water. Finally, the slides were dried with N2 gas.
+ Open protocol
+ Expand
2

Spontaneous Raman Spectroscopy Setup

Check if the same lab product or an alternative is used in the 5 most similar protocols
We obtained the spontaneous Raman spectra seen in Fig. 1c using a home-built Raman spectrometer. We illuminated the sample with 6.0 mW of light from a HeNe laser in a back-scattering geometry with an Olympus 10× objective for focusing. A Princeton Instruments Acton SP2500 spectrometer and a Princeton Instruments PIXIS:100BX were used for detection.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!