The largest database of trusted experimental protocols

Sfftools

Manufactured by Roche
Sourced in Switzerland

Sfftools is a line of laboratory equipment manufactured by Roche. The core function of Sfftools is to facilitate the processing and analysis of samples in a laboratory setting. The specific details and capabilities of this product are not available.

Automatically generated - may contain errors

2 protocols using sfftools

1

Multiplex 454 Amplicon Sequencing

Check if the same lab product or an alternative is used in the 5 most similar protocols
PCRs were performed in triplicate to minimize the inherent amplification bias of any given PCR of multicopy loci. The PCR products were verified by gel electrophoresis and, based on the intensity of the products, pooled in equal amounts for each of the three reactions. Each pool had a unique multiplex identifier (MID) (Roche Life Sciences) ligated to the products, which allowed for computational sorting of reads by animal post-sequencing. A 1/8 plate 454 FLX Titanium run was used to generate sequence data. The 454 sequence reads generated in this study were separated by MID using sfftools (Roche Life Sciences) for standard MIDs. Low quality reads were excluded from the analysis, resulting in a data set of approximately 103,761 reads.
+ Open protocol
+ Expand
2

BAC Clone Sequencing and Assembly

Check if the same lab product or an alternative is used in the 5 most similar protocols
BAC clones were sequenced using Roche GS FLX (Basel, Switzerland). BAC DNAs were prepared in a 96-deepwell plate, extracted using the alkaline lysis method and purified with the MultiScreen Filter plate (Millipore, Billerica, MA, USA). After fragmentation with the Covaris Acoustic Solubilizer LE220 (Covaris, Woburn, MA, USA), the sequencing libraries were constructed using the NEBNext DNA Library Prep Master Mix Set for 454 (New England Biolabs, Ipswich, MA, USA) and tagged with Multiplex Identifier (MID) Adaptors (Roche, Basel, Switzerland). The tagged DNAs were subjected to size selection using agarose gel electrophoresis to obtain DNA fragments of the appropriate size (600–1200 bp) and then quantified using the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA). The resulting libraries were sequenced according to the manufacturer’s recommendations. The resulting SFF files were split into separate files of each BAC clone based on MID by using the sffile program in SFF Tools (Roche, Basel, Switzerland). The split SFF files were used for de novo assembly with the GS De Novo Assembler v2.6 (Roche, Basel, Switzerland) with default parameters, and the BAC vector and E. coli genome sequences were trimmed.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!