Haloferax volcanii strain H26 was kindly provided by Thorsten Allers (University of Nottingham, UK). It was and grown in complex medium [36] (link) or in synthetic medium [37] (link) supplemented with 8 µM FeSO4 (Roth, P015.1), 0,1% (v/v) SL-6 trace element solution [38] (link) (all from Roth), 1 ml vitamin solution (Sigma Aldrich, B6891), 50 µg ml−1 uracil (Applichem, A0667) and 100 mM MOPS pH 7.2 (Sigma Aldrich, M3183). All components of the synthetic medium were of the grade “per analysis” and thus free of phosphate, e.g. K2HPO4 (Roth, 6878.2), NH4Cl (Applichem, A0988), glucose (Merck, 1083441000), NaCl (Roth, 3957.5), MgCl2 (Roth, 2189.1), MgSO4 (Applichem, A1037), KCl (Roth, 6781,1), CaCl2 (Applichem, A3587), and Tris (A1086). If not otherwise stated, the synthetic medium was also supplemented with 0.5% (w/v) glucose as a C source, 10 mM NH4Cl as a N source, and 1 mM K2HPO4 as a P source. For growth experiments with DNA as a source of P K2HPO4 was omitted and genomic DNA was added to a final concentration of 250 µg/ml. Cultures were grown in Erlenmeyer flasks in a rotary shaker at 42 °C and 250 rpm or in microtiter plates as described below.
Uracil
Uracil is a pyrimidine base found in RNA. It is a key component of the genetic code and plays a crucial role in the transcription and translation processes.
Lab products found in correlation
3 protocols using uracil
Haloferax volcanii Cultivation Protocol
Haloferax volcanii strain H26 was kindly provided by Thorsten Allers (University of Nottingham, UK). It was and grown in complex medium [36] (link) or in synthetic medium [37] (link) supplemented with 8 µM FeSO4 (Roth, P015.1), 0,1% (v/v) SL-6 trace element solution [38] (link) (all from Roth), 1 ml vitamin solution (Sigma Aldrich, B6891), 50 µg ml−1 uracil (Applichem, A0667) and 100 mM MOPS pH 7.2 (Sigma Aldrich, M3183). All components of the synthetic medium were of the grade “per analysis” and thus free of phosphate, e.g. K2HPO4 (Roth, 6878.2), NH4Cl (Applichem, A0988), glucose (Merck, 1083441000), NaCl (Roth, 3957.5), MgCl2 (Roth, 2189.1), MgSO4 (Applichem, A1037), KCl (Roth, 6781,1), CaCl2 (Applichem, A3587), and Tris (A1086). If not otherwise stated, the synthetic medium was also supplemented with 0.5% (w/v) glucose as a C source, 10 mM NH4Cl as a N source, and 1 mM K2HPO4 as a P source. For growth experiments with DNA as a source of P K2HPO4 was omitted and genomic DNA was added to a final concentration of 250 µg/ml. Cultures were grown in Erlenmeyer flasks in a rotary shaker at 42 °C and 250 rpm or in microtiter plates as described below.
Genetic Manipulation of Yeast Strains
Yeast Strain Construction and Cultivation
About PubCompare
Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.
We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.
However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.
Ready to get started?
Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required
Revolutionizing how scientists
search and build protocols!