The largest database of trusted experimental protocols

77 protocols using foxp3 apc

1

Tumor and Lymph Node Immune Profiling

Check if the same lab product or an alternative is used in the 5 most similar protocols
Tumor and lymph node immune infiltrates were evaluated on Day 5 post therapy. Injected tumors, contralateral tumors and draining lymph nodes were harvested and single-cell suspensions surface stained with CD3-APC, CD4-FITC, CD8-PE-Cy7, IFNγ-PE, CD11b-PE, CD11c-APC-Cy7, CD44-APC, CD62L-PE (BD), Foxp3-APC and Gr-1-FITC (eBioscience, San Diego, CA) and fixed using BD Cytofix/Cytoperm.
+ Open protocol
+ Expand
2

Rectal Immune Cell Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
Single-cell suspensions from rectal pinches were prepared as previously described30 (link). Rectal intraepithelial lymphocytes (IEL) and lamina propria(LP) were collected and subjected to flow cytometry analysis. The single-cell suspensions were first incubated with Fc Receptor blocking reagent (Miltenyi Biotec), followed by staining with viability dye (Invitrogen). The antibody mixtures were then incubated as previously described27 (link). For immune activation, the following antibodies were used: CD45-PerCP, CD3-PE-Cy7, CD4-BV605, CD8-APC-Cy7, CD14-V450, Ki67-APC, HLA-DR PE-Cy5, and CCR5-PE (BD Pharmingen); CD69-Alexa Fluor 700 (Biolegend); and CD38-FITC (STEMCELL Technologies). For detection of Treg and MDSCs, the following antibody mixture were used: CD45-PerCP/Cy5.5, CD3-PE-Cy7, CD4-BV605, CD8-BV785, lin 1-FITC (BD Pharmingen), FOXP3-APC (eBioscience), HLA-DR-APC-Cy7, CD11b-PE-Cy5, CD14-BV711, CD8-BV785, CD25-BV421, CD15-Alexa700 (Biolegend), CD33-PE (Milteny). An LSRII flow cytometer was used for data acquisition. FlowJo software (Tree Star Inc.) was used for data analyses.
+ Open protocol
+ Expand
3

Isolation and Analysis of Immune Cells from Lung and Spleen

Check if the same lab product or an alternative is used in the 5 most similar protocols
Lung tissue was chopped and digested using collagenase D (Roche Diagnosis) in Dulbecco’s modified Eagle’s medium (Life Technologies, Carlsbad, CA) for 30 min at 37 °C with agitation. Next, the chopped lung or spleen tissue was passed through a 40-μm cell strainer to obtain single-cell suspensions before RBC lysis. Cells were incubated with LIVE/DEAD Aqua (Thermo Fisher Scientific). Cells were stained with the following monoclonal antibodies: anti-mouse CD45-PerCP-Cy5.5 (BioLegend, San Diego, CA, USA), CD4-PE-Cy7 (BioLegend), CD25-PE (eBioscience), and Foxp3-APC (eBioscience, Waltham, MA, USA). Flow cytometry analysis was performed using a BD FACSCanto II flow cytometer (BD Bioscience, San Jose, CA, USA), and the results were analyzed using FlowJo software (TreeStar, Ashland, OR, USA).
+ Open protocol
+ Expand
4

Multicolor Flow Cytometry of Activated Tregs

Check if the same lab product or an alternative is used in the 5 most similar protocols
For the detection of allogeneically activated Tregs multicolor flow cytometry was performed using a combination of following monoclonal antibodies: anti-human CD4 Brilliant Violet 421 (clone: RPA-T4, biolegend), anti-human CD25 PE-Cy7 (clone: M-A251, biolegend), anti-human GARP PE (clone: ME-9FI, biolegend). Intracellular staining of FOXP3 APC (ebioscience, clone: PCH101) was performed according to manufacturer’s instructions. Subsequent flow cytometry was performed on a LSR II (BD Biosciences). Stimulator PBMCs were identified by CFSE labelling and excluded from the analysis. Tregs were identified as CD4+CD25highFOXP3+, activated Tregs were identified by their co-expression of GARP. Frequency of activated Tregs was calculated as ratio of CD4+CD25highFOXP3+GARP+ to CD4+CD25highFOXP3+ (Supplementary Fig. 1).
+ Open protocol
+ Expand
5

Phenotyping Treg Subsets in PBMC

Check if the same lab product or an alternative is used in the 5 most similar protocols
Frozen PBMC from WNV infected subjects were thawed, rested for 30 minutes and then co-stained with antibodies for surface markers and cytokines of interest, including CD4 PerCP (BD, clone RPA-T4), CD25 PE (BioLegend, clone BC96), CD127 AF488 (Biolegend, clone 8019D5), FoxP3 APC (eBioscience, clone PCH101), CTLA-4 PE-CF594 (BD, clone BN13) and CCR4 BV605 (Biolegend, clone L29IH4). After 20 min at 4 degrees, cells were washed and immediately analyzed by flow cytometry.
+ Open protocol
+ Expand
6

Comprehensive Tumor Immune Profiling

Check if the same lab product or an alternative is used in the 5 most similar protocols
Tumor cells isolated from mice were thawed and stained with LIVE/DEAD Fixable Violet Dead Staining Kit (ThermoFisher). Subsequently, the cells were divided and stained with cocktails of fluorochrome-conjugated monoclonal antibodies: CD3 PE-CF594, CD19 PE-CF594, CD49b PE-CF594 (all from BD Biosciences), CD45 BV605, CD11b PerCP-Cy5.5, CD11c BV650, F4/80 AlexaFluor 700, Ly6C PE, Ly6G APC-Cy7, MHC II FITC, CD80 PE-Cy7 (all from Biolegend) for myeloid cell identification and CD45 BV605, CD3 BV650, CD4 FITC, CD8 APC-Fire, CD25 PE, CD44 PE-Cy7, CD62L PerCP-Cy5.5 (all from BioLegend) for lymphocytes identification. Then, the cells were fixed using FoxP3 Fixation Permeabilization Staining Kit (eBioscience). Tumor cells stained with myeloid or lymphocyte cocktail were additionally incubated with anti-CD206 APC (BioLegend) or FoxP3 APC (eBioscience) antibodies, respectively. The analysis was performed using FACSFortessa flow cytometer with Diva software (Becton Dickinson).
+ Open protocol
+ Expand
7

Multiparameter Flow Cytometry Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
The cells were divided into several groups and then stained with fluorophore-conjugated antibodies, including CD11b-FITC or BV421 (eBioscience), Gr-1-PerCP Cy5.5 or APC (eBioscience), CCR5-APC or PE (BioLegend, CA, USA), CD45-AmCyan (BioLegend), CD4-PE (eBioscience), and CD25-FITC (eBioscience) for 30 min at 4°C in staining buffer (PBS with 10% FBS). CCL5-PE/Cyanine7 (BioLegend), Foxp3-APC (eBioscience), and interferon-gamma (IFN-γ)-FITC (eBioscience) were used for intracellular staining after culturing with fixation/permeabilization medium (eBioscience). Data were acquired through FACS AriaIII (BD Biosciences) and analyzed with FlowJo X (BD Biosciences).
+ Open protocol
+ Expand
8

Rectal Immune Cell Characterization

Check if the same lab product or an alternative is used in the 5 most similar protocols
Single-cell suspensions from rectal pinches were prepared as previously described30 (link). Rectal intraepithelial lymphocytes (IEL) and lamina propria(LP) were collected and subjected to flow cytometry analysis. The single-cell suspensions were first incubated with Fc Receptor blocking reagent (Miltenyi Biotec), followed by staining with viability dye (Invitrogen). The antibody mixtures were then incubated as previously described27 (link). For immune activation, the following antibodies were used: CD45-PerCP, CD3-PE-Cy7, CD4-BV605, CD8-APC-Cy7, CD14-V450, Ki67-APC, HLA-DR PE-Cy5, and CCR5-PE (BD Pharmingen); CD69-Alexa Fluor 700 (Biolegend); and CD38-FITC (STEMCELL Technologies). For detection of Treg and MDSCs, the following antibody mixture were used: CD45-PerCP/Cy5.5, CD3-PE-Cy7, CD4-BV605, CD8-BV785, lin 1-FITC (BD Pharmingen), FOXP3-APC (eBioscience), HLA-DR-APC-Cy7, CD11b-PE-Cy5, CD14-BV711, CD8-BV785, CD25-BV421, CD15-Alexa700 (Biolegend), CD33-PE (Milteny). An LSRII flow cytometer was used for data acquisition. FlowJo software (Tree Star Inc.) was used for data analyses.
+ Open protocol
+ Expand
9

Multiparametric Flow Cytometry Analysis

Check if the same lab product or an alternative is used in the 5 most similar protocols
Multi-color flow cytometry analysis was performed on PBMCs from all time points by staining for 30 minutes at 4°C with CD3-V450, CD8-FITC or APC, ICOS-PE, HLA-DR-PerCP-Cy5.5, CD25-PE-Cy7, CD45RA-PerCP-Cy5.5, CD62L-FITC, CD127-V450, PD-1-PE, Tim-3-AF700, CD4-APC-Cy7 (BD Biosciences, San Jose, CA), CCR7-PE-Cy7 (R&D Systems, Minneapolis, MN), CTLA-4-FITC (LSBio, Seattle, WA) and FoxP3-APC (eBioscience, San Diego, CA) for T cells. For natural killer (NK) cells, CD3-V450, CD16-APC-Cy7, CD56-PE-Cy7 and Tim-3-AF700 (BD) were used. For myeloid-derived suppressor cells (MDSCs), CD33-PE, CD11b-APC-Cy7, HLA-DR-PerCP-Cy5.5, CD14-V450 and CD15-APC (BD) were used. 1×105 cells were acquired on an LSRII (BD), and data was analyzed using FlowJo software (Tree Star Inc., Ashland, OR). The appropriate isotype controls were used, and dead cells were excluded from the analysis.
+ Open protocol
+ Expand
10

Isolation and Characterization of Murine CD4+ T Cells

Check if the same lab product or an alternative is used in the 5 most similar protocols
Naïve CD4+ T cells were isolated from spleens of wild-type C57BL/6 J mice (8–14 weeks; both sexes). In brief, dissected mouse spleens were gently ground through 70 µm cell strainer mesh (Falcon), and naïve CD4+/CD25+ (regulatory; Treg) or CD4+/CD25- (effector; Teff) T cells were isolated and collected using a CD4+CD25+ T cell isolation kit (Miltenyi Biotec; #130-091-041) and magnetic separation columns (Miltenyi Biotec, #130-042-201 and #130-042-401) according to manufacturer’s protocol. Purity of T cell populations were verified by using flow cytometry (Supplementary Fig. 6a; CD3-PerCP-Cy5.5 1:100, eBioscience, #45-0031-80; CD4-Pacific Blue 1:100, eBioscience, #57-0042-82; and Foxp3-APC 1:100, eBioscience, #17-5773-80; FlowJo v.10.6.2). Isolated CD4+ T cells were resuspended in RPMI 1640 containing 10% FBS, 1% PSQ, 1% sodium pyruvate, 1% HEPES, and 1% nonessential amino acids, and plated on poly-L-lysine coated coverslips >1 h before recording. Whole-cell recording of CD4+ T cells was carried out within 48 h after isolation.
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!