The largest database of trusted experimental protocols

Dx 500 hpaec pad system

Manufactured by Thermo Fisher Scientific
Sourced in United States

The DX 500 HPAEC-PAD system is a high-performance liquid chromatography (HPLC) instrument designed for the analysis of carbohydrates and other ionic compounds. The system utilizes high-performance anion-exchange chromatography (HPAEC) coupled with pulsed amperometric detection (PAD) to provide sensitive and selective detection of analytes.

Automatically generated - may contain errors

2 protocols using dx 500 hpaec pad system

1

Polysaccharide Compositional Analysis via HPAEC-PAD

Check if the same lab product or an alternative is used in the 5 most similar protocols
Hydrolyzed monosaccharides were generated by trifluoroacetic acid and H2SO4 hydrolysis (Shiga et al., 2009 (link)). The supernatants obtained were analyzed for neutral sugars and uronic acids by HPAEC-PAD according to methods of Shiga et al. (2009) (link). Briefly, 1 mg of polysaccharides obtained by extractions (WSF and OSF) was hydrolyzed with 1 mL of 2 M TFA at 120°C for 60 min in a screw-capped conical vial and centrifuged (2000 × g, 5 min, 25°C). Supernatants were transferred to new vials, dried under an N2 stream, and separated for analysis. The same procedure was applied for ASF and IF, but the precipitates that resulted from TFA hydrolysis (the cellulose-rich residues) were dried under an N2 stream and rehydrolyzed with 0.9 mL of 2 M H2SO4 at 120°C for 90 min. After hydrolysis, supernatants were neutralized with 0.1 mL of 50% NaOH (w/w) and analyzed in a DX 500 HPAEC-PAD system (Dionex, Sunnyvale, CA, USA). Neutral sugars (L-arabinose, D-galactose, D-glucose, D-fucose, D-mannose, L-rhamnose, and D-xylose) and uronic acids (D-glucuronic and D-galacturonic acid) were used as standards (Sigma; St. Louis, MO, USA).
+ Open protocol
+ Expand
2

Oligosaccharide Profiling of Water-Soluble Fractions

Check if the same lab product or an alternative is used in the 5 most similar protocols
The low molecular weight peaks from WSF at 1 and 5 DAH were separated by ultrafiltration using Millipore Amicon Ultra-4 centrifugal filter units (MWCO 30 kDa). The oligosaccharide profiles were analyzed using a DX 500 HPAEC-PAD system (Dionex, Sunnyvalle, CA, USA) as described by Jonathan et al. (2012) (link). Briefly, samples were diluted in 500 μL of water, injected (25 μL) and their profiles were analyzed in a CarboPac PA-1 column (2 mm × 250 mm) (Dionex). Oligomers derived from neutral sugars were eluted (0.3 mL/min) with a linear gradient of 0.02–0.05 M NaOH for 3 min and 0.05–0.075 M NaOH for 10 min, followed by isocratic elution of 0.1 M NaOH for 2 min. Oligomers derived from uronic acids were then eluted with a gradient of 0–1 M NaOAc in 0.1 M NaOH for 50 min. Finally, the column was washed with 1 M NaOAc in 0.1 M NaOH for 7 min followed by 0.1 M NaOH for 3 min. Equilibration was done by eluting 0.02 M NaOH for 20 min. Standards sugars (L-arabinose, D-galactose, D-glucose, D-fucose, D-mannose, L-rhamnose, D-xylose, D-galacturonic acid, and digalacturonic acid) and oligosaccharides (maltotriose, maltopentaose, maltohexaose, and trigalacturonic acid) were used as external standards (Sigma).
+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!