The largest database of trusted experimental protocols

T sol 100

Manufactured by Fujifilm

The T-SOL 100 is a laboratory equipment product manufactured by Fujifilm. It is designed for the processing and development of photographic film and other light-sensitive materials. The T-SOL 100 provides a reliable and consistent solution for this core function, ensuring the high-quality processing of film and other light-sensitive materials in a laboratory setting.

Automatically generated - may contain errors

5 protocols using t sol 100

1

Synthesis of Polymerized Acrylic Resin

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 15

N-butyl methacrylate (Kyoeisha Chemical Co., Ltd., Light Ester NB) 200 parts, 175 parts of monomer D, 90 parts of 4-hydroxybuthyl acrylate and 25 parts of styrene were mixed to prepare a monomer mixture solution, and 25 parts of 2,2′-azobis(2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, V-65) as an initiator was dissolved in an aromatic hydrocarbon (T-SOL 100) to prepare an initiator solution.

Aromatic hydrocarbon (T-SOL 100) 490 parts was placed in a stirrable flask, and the monomer solution and the initiator solution were added dropwise while nitrogen was enclosed. The polymerization temperature at this time was 100° C. The dropwise addition was carried out for 2 hours, and further aging was carried out at 100° C. for 4 hours to obtain a polymer solution J.

+ Open protocol
+ Expand
2

Synthesis of Polymer Solution D

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 5

N-butyl methacrylate (Kyoeisha Chemical Co., Ltd., Light Ester NB) 300 parts, and 150 parts of hydroxyethyl methacrylate (Kyoeisha Chemical Co., Ltd., Light Ester HO-250) were mixed to prepare a monomer mixture solution, and 23 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, V-65) as an initiator was dissolved in an aromatic hydrocarbon (T-SOL 100) to prepare an initiator solution.

Aromatic hydrocarbon (T-SOL 100) 225 parts and 225 parts of propylene glycol monomethyl ether acetate were placed in a stirrable flask, and the monomer solution and the initiator solution were added dropwise while nitrogen was enclosed. The polymerization temperature at this time was 130° C. The dropwise addition was carried out for 2 hours, and further aging was carried out at 130° C. for 4 hours to obtain a polymer solution D.

+ Open protocol
+ Expand
3

Preparation of Polymer Solution C

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 4

N-butyl methacrylate (Kyoeisha Chemical Co., Ltd., Light Ester NB) 100 parts, 150 parts of monomer A, and 125 parts of 4-hydroxybuthyl acrylate were mixed to prepare a monomer mixture solution, and 19 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, V-65) as an initiator was dissolved in an aromatic hydrocarbon (T-SOL 100) to prepare an initiator solution.

Aromatic hydrocarbon (T-SOL 100) 190 parts and 190 parts of propylene glycol monomethyl ether acetate were placed in a stirrable flask, and the monomer solution and the initiator solution were added dropwise while nitrogen was enclosed. The polymerization temperature at this time was 110° C. The dropwise addition was carried out for 2 hours, and further aging was carried out at 110° C. for 4 hours to obtain a polymer solution C.

+ Open protocol
+ Expand
4

Copolymerization of Methacrylate Monomers

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 2

N-butyl methacrylate (Kyoeisha Chemical Co., Ltd., Light Ester NB) 75 parts, 75 parts of 2-ethylhexyl methacrylate, 150 parts of t-butyl methacrylate (Kyoeisha Chemical Co., Ltd., Light Ester TB), and 150 parts of hydroxyethyl methacrylate (Kyoeisha Chemical Co., Ltd., Light Ester HO-250) were mixed to prepare a monomer mixture solution, and 23 parts of 2,2′-azobis (2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, V-65) as an initiator was dissolved in an aromatic hydrocarbon (T-SOL 100) to prepare an initiator solution.

Aromatic hydrocarbon (T-SOL 100) 225 parts and 225 parts of propylene glycol monomethyl ether acetate were placed in a stirrable flask, and the monomer solution and the initiator solution were added dropwise while nitrogen was enclosed. The polymerization temperature at this time was 130° C. The dropwise addition was carried out for 2 hours, and further aging was carried out at 130° C. for 4 hours to obtain a polymer solution B.

+ Open protocol
+ Expand
5

Synthesis of Methacrylate-Based Polymer

Check if the same lab product or an alternative is used in the 5 most similar protocols

Example 16

N-butyl methacrylate (Kyoeisha Chemical Co., Ltd., Light Ester NB) 200 parts, 175 parts of monomer E, 90 parts of 4-hydroxybuthyl acrylate and 25 parts of styrene were mixed to prepare a monomer mixture solution, and 25 parts of 2,2′-azobis(2,4-dimethylvaleronitrile) (Wako Pure Chemical Industries, V-65) as an initiator was dissolved in an aromatic hydrocarbon (T-SOL 100) to prepare an initiator solution.

Aromatic hydrocarbon (T-SOL 100) 490 parts was placed in a stirrable flask, and the monomer solution and the initiator solution were added dropwise while nitrogen was enclosed. The polymerization temperature at this time was 100° C. The dropwise addition was carried out for 2 hours, and further aging was carried out at 100° C. for 4 hours to obtain a polymer solution K.

+ Open protocol
+ Expand

About PubCompare

Our mission is to provide scientists with the largest repository of trustworthy protocols and intelligent analytical tools, thereby offering them extensive information to design robust protocols aimed at minimizing the risk of failures.

We believe that the most crucial aspect is to grant scientists access to a wide range of reliable sources and new useful tools that surpass human capabilities.

However, we trust in allowing scientists to determine how to construct their own protocols based on this information, as they are the experts in their field.

Ready to get started?

Sign up for free.
Registration takes 20 seconds.
Available from any computer
No download required

Sign up now

Revolutionizing how scientists
search and build protocols!